Efficient in-depth trapping with an oil-immersion objective lens.

Opt Lett 31:6 (2006) 766-768

Authors:

S Nader S Reihani, Mohammad A Charsooghi, Hamid R Khalesifard, Ramin Golestanian

Abstract:

Maximum trapping efficiency in optical tweezers occurs close to the coverslip because spherical aberration owing to a mismatch in the refractive indices of the specimen (water) and the immersion oil dramatically decreases the trap efficiency as the trap depth increases. Measuring the axial trap efficiency at various tube lengths by use of an oil-immersion objective has shown that such an aberration can be balanced by another source of spherical aberration, leading to a shift in the position of the maximum efficiency in the Z direction. For a 1.1 microm polystyrene bead we could achieve the maximal efficiency at a depth of 70 microm, whereas the trap was stable up to a depth of 100 microm.

Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length-scales

(2006)

Authors:

JT Padding, AA Louis

Reentrant anisotropic phases in a two-dimensional hole system

(2006)

Authors:

MJ Manfra, Z Jiang, SH Simon, LN Pfeiffer, KW West, AM Sergent

Measuring lateral efficiency of optical traps: The effect of tube length

Optics Communications 259:1 (2006) 204-211

Authors:

SNS Reihani, HR Khalesifard, R Golestanian

Abstract:

An optical tweezer setup is made based on a custom-designed inverted microscope, which can work both in finite and infinite tube length microscopy modes. It is shown that the spherical aberration due to the mismatch in the refractive indices of the specimen (water) and the immersion oil as well as the wavelength can be partially compensated by introducing another source for the spherical aberration provided it has the opposite sign. Changing the tube length is shown to be a good candidate for this effect: an improvement of up to a factor of four has been observed in the lateral efficiency of the trap. © 2005 Elsevier B.V. All rights reserved.

Polarized MIMO channels in 3-D: Models, measurements and mutual information

IEEE Journal on Selected Areas in Communications 24:3 (2006) 514-526

Authors:

M Shafi, M Zhang, AL Moustakas, PJ Smith, AF Molisch, F Tufvesson, SH Simon

Abstract:

Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information values and consider the impact of elevation spectrum on MI. Finally, the impact of multipath delays on XPD and MI is also explored. © 2006 IEEE.