Stick boundary conditions and rotational velocity auto-correlation functions for colloidal particles in a coarse-grained representation of the solvent

(2005)

Authors:

JT Padding, H Löwen, A Wysocki, AA Louis

Spin dynamics of the quasi two dimensional spin-1/2 quantum magnet Cs_2CuCl_4

(2005)

Authors:

Martin Y Veillette, Andrew JA James, Fabian HL Essler

Elastic correlations in nucleosomal DNA structure.

Phys Rev Lett 94:23 (2005) 238102

Authors:

Farshid Mohammad-Rafiee, Ramin Golestanian

Abstract:

The structure of DNA in the nucleosome core particle is studied using an elastic model that incorporates anisotropy in the bending energetics and twist-bend coupling. Using the experimentally determined structure of nucleosomal DNA [T. J. Richmond and C. A. Davey, Nature (London) 423, 145 (2003)], it is shown that elastic correlations exist between twist, roll, tilt, and stretching of DNA, as well as the distance between phosphate groups. The twist-bend coupling term is shown to be able to capture these correlations to a large extent, and a fit to the experimental data yields a new estimate of G = 25 nm for the value of the twist-bend coupling constant.

Propulsion of a molecular machine by asymmetric distribution of reaction products.

Phys Rev Lett 94:22 (2005) 220801

Authors:

Ramin Golestanian, Tanniemola B Liverpool, Armand Ajdari

Abstract:

A simple model for the reaction-driven propulsion of a small device is proposed as a model for (part of) a molecular machine in aqueous media. The motion of the device is driven by an asymmetric distribution of reaction products. The propulsive velocity of the device is calculated as well as the scale of the velocity fluctuations. The effects of hydrodynamic flow as well as a number of different scenarios for the kinetics of the reaction are addressed.

Transport between edge states in multilayer integer quantum Hall systems: exact treatment of Coulomb interactions and disorder

ArXiv cond-mat/0506223 (2005)

Authors:

JW Tomlinson, J-S Caux, JT Chalker

Abstract:

A set of stacked two-dimensional electron systems in a perpendicular magnetic field exhibits a three-dimensional version of the quantum Hall effect if interlayer tunneling is not too strong. When such a sample is in a quantum Hall plateau, the edge states of each layer combine to form a chiral metal at the sample surface. We study the interplay of interactions and disorder in transport properties of the chiral metal, in the regime of weak interlayer tunneling. Our starting point is a system without interlayer tunneling, in which the only excitations are harmonic collective modes: surface magnetoplasmons. Using bosonization and working perturbatively in the interlayer tunneling amplitude, we express transport properties in terms of the spectrum for these collective modes, treating electron-electron interactions and impurity scattering exactly. We calculte the conductivity as a function of temperature, finding that it increases with increasing temperature as observed in recent experiments. We also calculate the autocorrelation function of mesoscopic conductance fluctuations induced by changes in a magnetic field component perpendicular to the sample surface, and its dependence on temperature. We show that conductance fluctuations are characterised by a dephasing length that varies inversely with temperature.