Correction to: 'Collective rotational motion of freely expanding T84 epithelial cell colonies' (2023) by Ascione et al.
Dynamics, interference effects, and multistability in a Lorenz-like system of a classical wave-particle entity in a periodic potential.
Abstract:
A classical wave-particle entity (WPE) can be realized experimentally as a droplet walking on the free surface of a vertically vibrating liquid bath, with the droplet's horizontal walking motion guided by its self-generated wave field. These self-propelled WPEs have been shown to exhibit analogs of several quantum and optical phenomena. Using an idealized theoretical model that takes the form of a Lorenz-like system, we theoretically and numerically explore the dynamics of such a one-dimensional WPE in a sinusoidal potential. We find steady states of the system that correspond to a stationary WPE as well as a rich array of unsteady motions, such as back-and-forth oscillating walkers, runaway oscillating walkers, and various types of irregular walkers. In the parameter space formed by the dimensionless parameters of the applied sinusoidal potential, we observe patterns of alternating unsteady behaviors suggesting interference effects. Additionally, in certain regions of the parameter space, we also identify multistability in the particle's long-term behavior that depends on the initial conditions. We make analogies between the identified behaviors in the WPE system and Bragg's reflection of light as well as electron motion in crystals.From the XXZ chain to the integrable Rydberg-blockade ladder via non-invertible duality defects
Collective rotational motion of freely expanding T84 epithelial cell colonies
Abstract:
Coordinated rotational motion is an intriguing, yet still elusive mode of collective cell migration, which is relevant in pathological and morphogenetic processes. Most of the studies on this topic have been carried out on epithelial cells plated on micropatterned substrates, where cell motion is confined in regions of well-defined shapes coated with extracellular matrix adhesive proteins. The driver of collective rotation in such conditions has not been clearly elucidated, although it has been speculated that spatial confinement can play an essential role in triggering cell rotation. Here, we study the growth of epithelial cell colonies freely expanding (i.e. with no physical constraints) on the surface of cell culture plates and focus on collective cell rotation in such conditions, a case which has received scarce attention in the literature. One of the main findings of our work is that coordinated cell rotation spontaneously occurs in cell clusters in the free growth regime, thus implying that cell confinement is not necessary to elicit collective rotation as previously suggested. The extent of collective rotation was size and shape dependent: a highly coordinated disc-like rotation was found in small cell clusters with a round shape, while collective rotation was suppressed in large irregular cell clusters generated by merging of different clusters in the course of their growth. The angular motion was persistent in the same direction, although clockwise and anticlockwise rotations were equally likely to occur among different cell clusters. Radial cell velocity was quite low as compared to the angular velocity, in agreement with the free expansion regime where cluster growth is essentially governed by cell proliferation. A clear difference in morphology was observed between cells at the periphery and the ones in the core of the clusters, the former being more elongated and spread out as compared to the latter. Overall, our results, to our knowledge, provide the first quantitative and systematic evidence that coordinated cell rotation does not require a spatial confinement and occurs spontaneously in freely expanding epithelial cell colonies, possibly as a mechanism for the system.