Odd Fracton Theories, Proximate Orders, and Parton Constructions

Physical Review B: Condensed Matter and Materials Physics American Physical Society

Authors:

Michael Pretko, Sa Parameswaran, Michael Hermele

Abstract:

The Lieb-Schultz-Mattis (LSM) theorem implies that gapped phases of matter must satisfy non-trivial conditions on their low-energy properties when a combination of lattice translation and $U(1)$ symmetry are imposed. We describe a framework to characterize the action of symmetry on fractons and other sub-dimensional fractional excitations, and use this together with the LSM theorem to establish that X-cube fracton order can occur only at integer or half-odd-integer filling. Using explicit parton constructions, we demonstrate that "odd" versions of X-cube fracton order can occur in systems at half-odd-integer filling, generalizing the notion of odd $Z_2$ gauge theory to the fracton setting. At half-odd-integer filling, exiting the X-cube phase by condensing fractional quasiparticles leads to symmetry-breaking, thereby allowing us to identify a class of conventional ordered phases proximate to phases with fracton order. We leverage a dual description of one of these ordered phases to show that its topological defects naturally have restricted mobility. Condensing pairs of these defects then leads to a fracton phase, whose excitations inherit these mobility restrictions.

On thermal fluctuations in quantum magnets

Physical review B: Condensed matter and materials physics American Physical Society

Authors:

DA Tennant, S Notbohm, B Lake, AJA James, FHL Essler, H-J Mikeska, J Fielden, P Kögerler, PC Canfield, MTF Telling

Abstract:

The effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic neutron scattering on copper nitrate, a model material for the one-dimensional (1D) bond alternating Heisenberg chain, combined with theoretical and numerical analysis. We observe and interpret the thermally induced central peak due to intraband scattering as well as the thermal development of an asymmetric continuum of scattering. We relate this asymmetric line broadening to hard core constraints and quasi-particle interactions. Our findings are a counter example to recent assertions of universality of line broadening in 1D systems and are to be considered as a new paradigm of behaviour, applicable to a broad range of quantum systems.

One-Dimensional Luttinger Liquids in a Two-Dimensional Moiré Lattice

Nature Nature Research

Authors:

Pengjie Wang, Guo Yu, Yves H Kwan, Yanyu Jia, Shiming Lei, Sebastian Klemenz, F Alexandre Cevallos, Ratnadwip Singha, Trithep Devakul, Kenji Watanabe, Takashi Taniguchi, Shivaji L SONDHI, Robert J Cava, Leslie M Schoop, Siddharth ASHOK PARAMESWARAN, Sanfeng Wu

Abstract:

The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions (2D), especially in models of closely packed arrays of 1D quantum wires, each being described as a LL. Such coupled-wire models have been successfully used to construct 2D anisotropic non-Fermi liquids, quantum Hall states, topological phases, and quantum spin liquids. However, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moir\'e superlattice made of twisted bilayer tungsten ditelluride (tWTe$_{2}$). Originating from the anisotropic lattice of the monolayer, the moir\'e pattern of tWTe$_{2}$ hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tunable by the interlayer twist angle. At a twist angle of ~ 5 degrees, we find that hole-doped tWTe$_{2}$ exhibits exceptionally large transport anisotropy with a resistance ratio of ~ 1000 between two orthogonal in-plane directions. The across-wire conductance exhibits power-law scaling behaviors, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of correlated and topological quantum phases based on coupled-wire models and LL physics.

Percolation in Fock space as a proxy for many-body localisation

Physical review B: Condensed matter and materials physics American Physical Society

Authors:

Sthitadhi Roy, JT Chalker, David E Logan

Abstract:

We study classical percolation models in Fock space as proxies for the quantum many-body localisation (MBL) transition. Percolation rules are defined for two models of disordered quantum spin-chains using their microscopic quantum Hamiltonians and the topologies of the associated Fock-space graphs. The percolation transition is revealed by the statistics of Fock-space cluster sizes, obtained by exact enumeration for finite-sized systems. As a function of disorder strength, the typical cluster size shows a transition from a volume law in Fock space to sub-volume law, directly analogous to the behaviour of eigenstate participation entropies across the MBL transition. Finite-size scaling analyses for several diagnostics of cluster size statistics yield mutually consistent critical properties. We show further that local observables averaged over Fock-space clusters also carry signatures of the transition, with their behaviour across it in direct analogy to that of corresponding eigenstate expectation values across the MBL transition. The Fock-space clusters can be explored under a mapping to kinetically constrained models. Dynamics within this framework likewise show the ergodicity-breaking transition via Monte Carlo averaged local observables, and yield critical properties consistent with those obtained from both exact cluster enumeration and analytic results derived in our recent work [arXiv:1812.05115]. This mapping allows access to system sizes two orders of magnitude larger than those accessible in exact enumerations. Simple physical pictures based on freezing of local real-space segments of spins are also presented, and shown to give values for the critical disorder strength and correlation length exponent $\nu$ consistent with numerical studies.

Quantum oscillations in the zeroth Landau Level and the serpentine Landau fan

Physical Review Letters American Physical Society

Authors:

T Devakul, Yves H Kwan, SL Sondhi, SA Parameswaran

Abstract:

We identify an unusual mechanism for quantum oscillations in nodal semimetals, driven by a single pair of Landau levels periodically closing their gap at the Fermi energy as a magnetic field is varied. These `zero Landau level' quantum oscillations (ZQOs) appear in the nodal limit where the zero-field Fermi volume vanishes, and have distinctive periodicity and temperature dependence. We link the Landau spectrum of a two-dimensional (2D) nodal semimetal to the Rabi model, and show by exact solution that across the entire Landau fan, pairs of opposite-parity Landau levels are intertwined in a `serpentine' manner. We propose 2D surfaces of topological crystalline insulators as natural settings for ZQOs, and comment on implications for anomaly physics in 3D nodal semimetals.