Diffusion and photon recycling in halide perovskite thin films: insights from experiment and theory

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 11464 (2020) 114640j-114640j-6

Authors:

A Sridharan, Nakita K Noel, Barry P Rand, Stéphane Kéna-Cohen

Crystalline Nature of Colloids in Methylammonium Lead Halide Perovskite Precursor Inks Revealed by Cryo-Electron Microscopy.

The journal of physical chemistry letters 11:15 (2020) 5980-5986

Authors:

Nikita S Dutta, Nakita K Noel, Craig B Arnold

Abstract:

Metal halide perovskites have generated interest across many fields for the impressive optoelectronic properties achievable in films produced using facile solution-processing techniques. Previous research has revealed the colloidal nature of perovskite precursor inks and established a relationship between the colloid distribution and the film optoelectronic quality. Yet, the identity of colloids remains unknown, hindering our understanding of their role in perovskite crystallization. Here, we investigate precursor inks of the prototypical methylammonium lead triiodide perovskite using cryo-electron microscopy (cryo-EM) and show, for the first time, that the colloids are neither amorphous nor undissolved lead iodide, as previously speculated, but are a crystalline, non-perovskite material. We identify this as a perovskite precursor phase and discuss this as a potential means to understanding the role of chloride in processing. This work establishes cryo-EM as a viable technique to elucidate the nature of colloids in perovskite inks, a vital step toward a fundamental understanding of thin-film crystallization.

Ultraviolet Photoemission Spectroscopy and Kelvin Probe Measurements on Metal Halide Perovskites: Advantages and Pitfalls

Advanced Energy Materials Wiley 10:26 (2020)

Authors:

Fengyu Zhang, Scott H Silver, Nakita K Noel, Florian Ullrich, Barry P Rand, Antoine Kahn

Metal composition influences optoelectronic quality in mixed-metal lead-tin triiodide perovskite solar absorbers

Energy and Environmental Science Royal Society of Chemistry 13:6 (2020) 1776-1787

Authors:

Matthew Klug, Rebecca Milot, Jay Patel, Thomas Green, Harry Sansom, Michael Farrar, Alexandra Ramadan, Samuele Martani, Zhiping Wang, Bernard Wenger, James Ball, Liam Langshaw, Annamaria Petrozza, Michael Johnston, Laura Herz, Henry J Snaith

Abstract:

Current designs for all-perovskite multi-junction solar cells require mixed-metal Pb-Sn compositions to achieve narrower band gaps than are possible with their neat Pb counterparts. The lower band gap range achievable with mixed-metal Pb-Sn perovskites also encompasses the 1.3 to 1.4 eV range that is theoretically ideal for maximising the efficiency of single-junction devices. Here we examine the optoelectronic quality and photovoltaic performance of the ((HC(NH2)2)0.83Cs0.17)(Pb1-ySny)I3 family of perovskite materials across the full range of achievable band gaps by substituting between 0.001% and 70% of the Pb content with Sn. We reveal that a compositional range of "defectiveness"exists when Sn comprises between 0.5% and 20% of the metal content, but that the optoelectronic quality is restored for Sn content between 30-50%. When only 1% of Pb content is replaced by Sn, we find that photoconductivity, photoluminescence lifetime, and photoluminescence quantum efficiency are reduced by at least an order of magnitude, which reveals that a small concentration of Sn incorporation produces trap sites that promote non-radiative recombination in the material and limit photovoltaic performance. While these observations suggest that band gaps between 1.35 and 1.5 eV are unlikely to be useful for optoelectronic applications without countermeasures to improve material quality, highly efficient narrower band gap absorber materials are possible at or below 1.33 eV. Through optimising single-junction photovoltaic devices with Sn compositions of 30% and 50%, we respectively demonstrate a 17.6% efficient solar cell with an ideal single-junction band gap of 1.33 eV and an 18.1% efficient low band gap device suitable for the bottom absorber in all-perovskite multi-junction cells.

(Invited) Carbon Nanotubes As an Effective and Stable p-Type Contact for Perovskite Solar Cells

ECS Meeting Abstracts The Electrochemical Society MA2020-01:5 (2020) 610-610

Authors:

Severin N Habisreutinger, Nakita K Noel