An open-cage bis[60]fulleroid as electron transport material for tin halide perovskite solar cells

Chemical Communications Royal Society of Chemistry (RSC) (2024)

Authors:

Wentao Liu, Guanglin Huang, Chien-Yu Chen, Tiancheng Tan, Harata Fuyuki, Shuaifeng Hu, Tomoya Nakamura, MInh Anh Truong, Richard Murdey, Yoshifumi Hashikawa, Yasujiro Murata, Atsushi Wakamiya

Abstract:

An open-cage bis[60]fulleroid (OC) was applied as electron transport material (ETM) in tin (Sn) halide perovskite solar cells (PSCs). Due to the reduced offset between the energy levels of Sn-based...

Multifunctional ytterbium oxide buffer for perovskite solar cells

Nature Springer Nature 625:7995 (2024) 516-522

Authors:

Peng Chen, Yun Xiao, Juntao Hu, Shunde Li, Deying Luo, Rui Su, Pietro Caprioglio, Pascal Kaienburg, Xiaohan Jia, Nan Chen, Jingjing Wu, Yanping Sui, Pengyi Tang, Haoming Yan, Tianyu Huang, Maotao Yu, Qiuyang Li, Lichen Zhao, Cheng-Hung Hou, Yun-Wen You, Jing-Jong Shyue, Dengke Wang, Xiaojun Li, Qing Zhao, Qihuang Gong, Zheng-Hong Lu, Henry J Snaith, Rui Zhu

Abstract:

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices. A ‘buffer material’ between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber. Thus far, evaporable organic molecules and atomic-layer-deposited metal oxides have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.

Effective small organic molecule as a defect passivator for highly efficient quasi-2D perovskite light-emitting diodes

Small Wiley 20:23 (2024) 2308847

Authors:

Ying Li, Fuqiang Li, Zhongkai Yu, Vellaiappillai Tamilavan, Chang-Mok Oh, Woo Hyeon Jeong, Xinyu Shen, Seongbeom Lee, Xiangrui Du, Eunhye Yang, Yoomi Ahn, In-Wook Hwang, Bo Ram Lee, Sung Heum Park

Abstract:

The use of a small organic molecular passivator is proven to be a successful strategy for producing higher-performing quasi-2D perovskite light-emitting diodes (PeLEDs). The small organic molecule can passivate defects on the grain surround and surface of perovskite crystal structures, preventing nonradiative recombination and charge trapping. In this study, a new small organic additive called 2, 8-dibromodibenzofuran (diBDF) is reported and examines its effectiveness as a passivating agent in high-performance green quasi-2D PeLEDs. The oxygen atom in diBDF, acting as a Lewis base, forms coordination bonds with uncoordinated Pb2+, so enhancing the performance of the device. In addition, the inclusion of diBDF in the quasi-2D perovskite results in a decrease in the abundance of low-n phases, hence facilitating efficient carrier mobility. Consequently, PeLED devices with high efficiency are successfully produced, exhibiting an external quantum efficiency of 19.9% at the emission wavelength of 517 nm and a peak current efficiency of 65.0 cd A-1.

Alumina Nanoparticle Interfacial Buffer Layer for Low-Bandgap Lead-Tin Perovskite Solar Cells

University of Oxford (2024)

Authors:

Heon Jin, Michael Farrar, James Ball, Akash Dasgupta, Pietro Caprioglio, Sudarshan Narayanan, Robert Oliver, Florine Rombach, Benjamin Putland, Michael Johnston, Henry Snaith

Abstract:

Mixed lead-tin (Pb:Sn) halide perovskites are promising absorbers withnarrow-bandgaps (1.25–1.4 eV) suitable for high-efficiency all-perovskitetandem solar cells. However, solution processing of optimally thick Pb:Snperovskite films is notoriously difficult in comparison with their neat-Pbcounterparts. This is partly due to the rapid crystallization of Sn-basedperovskites, resulting in films that have a high degree of roughness. Rougherfilms are harder to coat conformally with subsequent layers usingsolution-based processing techniques leading to contact between theabsorber and the top metal electrode in completed devices, resulting in a lossof VOC , fill factor, efficiency, and stability. Herein, this study employs anon-continuous layer of alumina nanoparticles distributed on the surface ofrough Pb:Sn perovskite films. Using this approach, the conformality of thesubsequent electron-transport layer, which is only tens of nanometres inthickness is improved. The overall maximum-power-point-tracked efficiencyimproves by 65% and the steady-state VOC improves by 28%. Application ofthe alumina nanoparticles as an interfacial buffer layer also results in highlyreproducible Pb:Sn solar cell devices while simultaneously improving devicestability at 65 °C under full spectrum simulated solar irradiance. Aged devicesshow a six-fold improvement in stability over pristine Pb:Sn devices,increasing their lifetime to 120 h

DATASET FOR: Disentangling the origin of degradation in perovskite solar cells via optical imaging and Bayesian inference.

University of Oxford (2024)

Authors:

Akash Dasgupta, Robert Oliver, Yen Lin, Manuel Kober-Czerny, Alexandra Ramadan, Henry Snaith

Abstract:

Here we deposit the data and code necessary to generate the analysis found in our work. We have included: Simulation output from drift diffusion simulations; Photoluminescence imaging data (in a semi-raw and processed format); Outputs from our Bayesian analysis combining the two; and a clone of the code (from our public git repo) used to generate the analysis.