One-Step Solution Deposition of Tin-Perovskite onto a Self-Assembled Monolayer with a DMSO-Free Solvent System.

ACS energy letters American Chemical Society (ACS) 8:12 (2023) 5170-5174

Authors:

Ece Aktas, Isabella Poli, Corinna Ponti, Guixiang Li, Andrea Olivati, Diego Di Girolamo, Fahad Ahmed Alharthi, Meng Li, Emilio Palomares, Annamaria Petrozza, Antonio Abate

Abstract:

We show for the first time DMSO-free tin-based perovskite solar cells with a self-assembled hole selective contact (MeO-2PACz). Our method provides reproducible and hysteresis-free devices with MeO-2PACz, having the best device PCE of 5.8 % with a <i>V</i><sub>OC</sub> of 638 mV.

Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells

Nature Energy Springer Nature 9:1 (2023) 70-80

Authors:

Junke Wang, Lewei Zeng, Dong Zhang, Aidan Maxwell, Hao Chen, Kunal Datta, Alessandro Caiazzo, Willemijn HM Remmerswaal, Nick RM Schipper, Zehua Chen, Kevin Ho, Akash Dasgupta, Gunnar Kusch, Riccardo Ollearo, Laura Bellini, Shuaifeng Hu, Zaiwei Wang, Chongwen Li, Sam Teale, Luke Grater, Bin Chen, Martijn M Wienk, Rachel A Oliver, Henry J Snaith, René AJ Janssen, Edward H Sargent

Abstract:

Monolithic all-perovskite triple-junction solar cells have the potential to deliver power conversion efficiencies beyond those of state-of-art double-junction tandems and well beyond the detailed-balance limit for single junctions. Today, however, their performance is limited by large deficits in open-circuit voltage and unfulfilled potential in both short-circuit current density and fill factor in the wide-bandgap perovskite sub cell. Here we find that halide heterogeneity—present even immediately following materials synthesis—plays a key role in interfacial non-radiative recombination and collection efficiency losses under prolonged illumination for Br-rich perovskites. We find that a diammonium halide salt, propane-1,3-diammonium iodide, introduced during film fabrication, improves halide homogenization in Br-rich perovskites, leading to enhanced operating stability and a record open-circuit voltage of 1.44 V in an inverted (p–i–n) device; ~86% of the detailed-balance limit for a bandgap of 1.97 eV. The efficient wide-bandgap sub cell enables the fabrication of monolithic all-perovskite triple-junction solar cells with an open-circuit voltage of 3.33 V and a champion PCE of 25.1% (23.87% certified quasi-steady-state efficiency).

Triisopropylsilylethynyl-Functionalized Anthracene-Based Hole Transport Materials for Efficient Hybrid Lead Halide Perovskite Solar Cells

Chemistry of Materials American Chemical Society (ACS) 35:21 (2023) 9378-9389

Authors:

Ece Aktas, Thi Huong Le, Michel Frigoli, Guixiang Li, Hans Köbler, Johan Liotier, Antonio J Riquelme, Antonio Abate, Renaud Demadrille, Emilio Palomares

Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects.

Nanoscale advances 5:23 (2023) 6542-6547

Authors:

Dora A González, Carlos E Puerto Galvis, Wenhui Li, Maria Méndez, Ece Aktas, Eugenia Martínez-Ferrero, Emilio Palomares

Abstract:

The use of self-assembled molecules (SAMs) as hole transport materials (HTMs) in p-i-n perovskite solar cells (iPSCs) has triggered widespread research due to their relatively easy synthetic methods, suitable energy level alignment with the perovskite material and the suppression of chemical defects. Herein, three new SAMs have been designed and synthesised based on a carbazole core moiety and modified functional groups through an efficient synthetic protocol. The SAMs have been used to understand the SAM/perovskite interface interactions and establish the relationship between the SAM molecular structure and the resulting performance of the perovskite-based devices. The best devices show efficiencies ranging from 18.9% to 17.5% under standard illumination conditions, which are very close to that of our benchmark EADR03, which has been recently commercialised. Our work aims to provide knowledge on the structure of the molecules versus device function relationship.

Thermal Management Enables Stable Perovskite Nanocrystal Light‐Emitting Diodes with Novel Hole Transport Material (Small 45/2023)

Small Wiley 19:45 (2023)

Authors:

Xinyu Shen, Seon Lee Kwak, Woo Hyeon Jeong, Ji Won Jang, Zhongkai Yu, Hyungju Ahn, Hea Jung Park, Hyosung Choi, Sung Heum Park, Henry J Snaith, Do‐Hoon Hwang, Bo Ram Lee