Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells
Advanced Materials Wiley 35:30 (2023) e2211742
Abstract:
Metal halide perovskite based tandem solar cells are promising to achieve power conversion efficiency beyond the theoretical limit of their single-junction counterparts. However, overcoming the significant open-circuit voltage deficit present in wide-bandgap perovskite solar cells remains a major hurdle for realizing efficient and stable perovskite tandem cells. Here, a holistic approach to overcoming challenges in 1.8 eV perovskite solar cells is reported by engineering the perovskite crystallization pathway by means of chloride additives. In conjunction with employing a self-assembled monolayer as the hole-transport layer, an open-circuit voltage of 1.25 V and a power conversion efficiency of 17.0% are achieved. The key role of methylammonium chloride addition is elucidated in facilitating the growth of a chloride-rich intermediate phase that directs crystallization of the desired cubic perovskite phase and induces more effective halide homogenization. The as-formed 1.8 eV perovskite demonstrates suppressed halide segregation and improved optoelectronic properties.Probing the local electronic structure in metal halide perovskites through cobalt substitution (Small Methods 6/2023)
Small Methods Wiley 7:6 (2023) 2370029
Abstract:
Inside Front CoverIn article number 2300095, Hesjedal and co-workers demonstrate that the substitution of Co2+ ions into the halide perovskite imparts magnetic behavior to the material while maintaining photovoltaic performance. We utilize the Co2+ ions (shown as robots) themselves as probes to sense the local electronic environment of lead in the perovskite, thereby opening the substitution gateway for developing novel functional perovskite materials and devices for future technologies.
Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems
Nature Energy Springer Nature 8:6 (2023) 610-620
BAr2 -Bridged Azafulvene Dimers with Tunable Energy Levels for Photostable Near-Infrared Dyes.
Chemistry (Weinheim an der Bergstrasse, Germany) 29:34 (2023) e202300529
Abstract:
Organic dyes with strong absorption in the near-infrared (NIR) region are potentially useful in medical applications, such as tumor imaging and photothermal therapy. In this work, new NIR dyes combining BAr2 -bridged azafulvene dimer acceptors with diarylaminothienyl donors in a donor-acceptor-donor configuration were synthesized. Surprisingly, it was found that in these molecules the BAr2 -bridged azafulvene acceptor adopts a 5-membered, rather than 6-membered ring structure. The influence of the aryl substituents on the HOMO and LUMO energy levels of the dye compounds was assessed from electrochemical and optical measurements. Strong electron-withdrawing fluorinated substituents (Ar=C6 F5 , 3,5-(CF3 )2 C6 H3 ) lowered the HOMO energy while preserving the small HOMO-LUMO energy gap, resulting in promising NIR dye molecules that combine strong absorption bands centered around 900 nm with good photostability.Defect Engineering to Achieve Photostable Wide Bandgap Metal Halide Perovskites.
ACS energy letters 8:6 (2023) 2801-2808