Visualizing Macroscopic Inhomogeneities in Perovskite Solar Cells

Fundacio Scito (2023)

Authors:

Akash Dasgupta, Suhas Mahesh, Henry Snaith

Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells

Science American Association for the Advancement of Science (AAAS) 381:6654 (2023) 209-215

Authors:

So Min Park, Mingyang Wei, Jian Xu, Harindi R Atapattu, Felix T Eickemeyer, Kasra Darabi, Luke Grater, Yi Yang, Cheng Liu, Sam Teale, Bin Chen, Hao Chen, Tonghui Wang, Lewei Zeng, Aidan Maxwell, Zaiwei Wang, Keerthan R Rao, Zhuoyun Cai, Shaik M Zakeeruddin, Jonathan T Pham, Chad M Risko, Aram Amassian, Mercouri G Kanatzidis, Kenneth R Graham, Michael Grätzel, Edward H Sargent

Thermal management enables stable perovskite nanocrystal light-emitting diodes with novel hole transport material

Small Wiley 19:45 (2023) 2303472

Authors:

Xinyu Shen, Seon Lee Kwak, Woo Hyeon Jeong, Ji Won Jang, Zhongkai Yu, Hyungju Ahn, Hea Jung Park, Hyosung Choi, Sung Heum Park, Henry J Snaith, Do-Hoon Hwang, Bo Ram Lee

Abstract:

The severely insufficient operational lifetime of perovskite light-emitting diodes (LEDs) is incompatible with the rapidly increasing external quantum efficiency, even as it approaches the theoretical limit, thereby significantly impeding the commercialization of perovskite LEDs. In addition, Joule heating induces ion migration and surface defects, degrades the photoluminescence quantum yield and other optoelectronic properties of perovskite films, and induces the crystallization of charge transport layers with low glass transition temperatures, resulting in LED degradation under continuous operation. Here, a novel thermally crosslinked hole transport material, poly(FCA<sub>60</sub> -co-BFCA<sub>20</sub> -co-VFCA<sub>20</sub> ) (poly-FBV), with temperature-dependent hole mobility is designed, which is advantageous for balancing the charge injection of the LEDs and limiting the generation of Joule heating. The optimised CsPbI<sub>3</sub> perovskite nanocrystal LEDs with poly-FBV realise approximately a 2-fold external quantum efficiency increase over the LED with commercial hole transport layer poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), owing to the balanced carrier injection and suppressed exciton quenching. Moreover, because of the Joule heating control provided by the novel crosslinked hole transport material, the LED utilising crosslinked poly-FBV has a 150-fold longer operating lifetime (490 min) than that utilizing poly-TPD (3.3 min). The study opens a new avenue for the use of PNC LEDs in commercial semiconductor optoelectronic devices.

Sterically Suppressed Phase Segregation in 3D Hollow Mixed-Halide Wide Band Gap Perovskites

The Journal of Physical Chemistry Letters American Chemical Society (ACS) 14:26 (2023) 6157-6162

Authors:

Luke Grater, Mingcong Wang, Sam Teale, Suhas Mahesh, Aidan Maxwell, Yanjiang Liu, So Min Park, Bin Chen, Frédéric Laquai, Mercouri G Kanatzidis, Edward H Sargent

Tin halide perovskite solar cells with open-circuit voltages approaching the Shockley–Queisser limit

ACS Applied Materials & Interfaces American Chemical Society 15:27 (2023) 32487-32495

Authors:

Wentao Liu, Shuaifeng Hu, Jorge Pascual, Kyohei Nakano, Richard Murdey, Keisuke Tajima, Atsushi Wakamiya

Abstract:

The power conversion efficiency of tin-based halide perovskite solar cells is limited by large photovoltage losses arising from the significant energy-level offset between the perovskite and the conventional electron transport material, fullerene C60. The fullerene derivative indene-C60 bisadduct (ICBA) is a promising alternative to mitigate this drawback, owing to its superior energy level matching with most tin-based perovskites. However, the less finely controlled energy disorder of the ICBA films leads to the extension of its band tails that limits the photovoltage of the resultant devices and reduces the power conversion efficiency. Herein, we fabricate ICBA films with improved morphology and electrical properties by optimizing the choice of solvent and the annealing temperature. Energy disorder in the ICBA films is substantially reduced, as evidenced by the 22 meV smaller width of the electronic density of states. The resulting solar cells show open-circuit voltages of up to 1.01 V, one of the highest values reported so far for tin-based devices. Combined with surface passivation, this strategy enabled solar cells with efficiencies of up to 11.57%. Our work highlights the importance of controlling the properties of the electron transport material toward the development of efficient lead-free perovskite solar cells and demonstrates the potential of solvent engineering for efficient device processing.