Anion optimization for bifunctional surface passivation in perovskite solar cells

Nature Materials Springer Nature 22:12 (2023) 1507-1514

Authors:

Jian Xu, Hao Chen, Luke Grater, Cheng Liu, Yi Yang, Sam Teale, Aidan Maxwell, Suhas Mahesh, Haoyue Wan, Yuxin Chang, Bin Chen, Benjamin Rehl, So Min Park, Mercouri G Kanatzidis, Edward H Sargent

Synergistic surface modification for high-efficiency perovskite nanocrystal light-emitting diodes: divalent metal ion doping and halide-based ligand passivation

Advanced Science Wiley 11:4 (2023) 2305383

Authors:

Woo Hyeon Jeong, Seongbeom Lee, Hochan Song, Xinyu Shen, Hyuk Choi, Yejung Choi, Jonghee Yang, Jung Won Yoon, Zhongkai Yu, Jihoon Kim, Gyeong Eun Seok, Jeongjae Lee, Hyun You Kim, Henry J Snaith, Hyosung Choi, Sung Heum Park, Bo Ram Lee

Abstract:

Surface defects of metal halide perovskite nanocrystals (PNCs) substantially compromise the optoelectronic performances of the materials and devices via undesired charge recombination. However, those defects, mainly the vacancies, are structurally entangled with each other in the PNC lattice, necessitating a delicately designed strategy for effective passivation. Here, a synergistic metal ion doping and surface ligand exchange strategy is proposed to passivate the surface defects of CsPbBr3 PNCs with various divalent metal (e.g., Cd2+, Zn2+, and Hg2+) acetate salts and didodecyldimethylammonium (DDA+) via one-step post-treatment. The addition of metal acetate salts to PNCs is demonstrated to suppress the defect formation energy effectively via the ab initio calculations. The developed PNCs not only have near-unity photoluminescence quantum yield and excellent stability but also show luminance of 1175 cd m−2, current efficiency of 65.48 cd A−1, external quantum efficiency of 20.79%, wavelength of 514 nm in optimized PNC light-emitting diodes with Cd2+ passivator and DDA ligand. The “organic–inorganic” hybrid engineering approach is completely general and can be straightforwardly applied to any combination of quaternary ammonium ligands and source of metal, which will be useful in PNC-based optoelectronic devices such as solar cells, photodetectors, and transistors.

Ultranarrow line width room-temperature single-photon source from perovskite quantum dot embedded in optical microcavity

Nano Letters American Chemical Society 23:23 (2023) 10667-10673

Authors:

tristan Farrow, Robert Taylor

Abstract:

Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just ∼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.

One-step solution deposition of tin-perovskite onto a self-assembled monolayer with a DMSO-free solvent system

ACS Energy Letters American Chemical Society 8:12 (2023) 5170-5174

Authors:

Ece Aktas, Isabella Poli, Corinna Ponti, Guixiang Li, Andrea Olivati, Diego Di Girolamo, Fahad Ahmed Alharthi, Meng Li, Emilio Palomares, Annamaria Petrozza, Antonio Abate

Abstract:

We show for the first time DMSO-free tin-based perovskite solar cells with a self-assembled hole selective contact (MeO-2PACz). Our method provides reproducible and hysteresis-free devices with MeO-2PACz, having the best device PCE of 5.8 % with a VOC of 638 mV.

Influence of the carbazole moiety in self-assembling molecules as selective contacts in perovskite solar cells: interfacial charge transfer kinetics and solar-to-energy efficiency effects

Nanoscale Advances Royal Society of Chemistry (RSC) 5:23 (2023) 6542-6547

Authors:

Dora A González, Carlos E Puerto Galvis, Wenhui Li, Maria Méndez, Ece Aktas, Eugenia Martínez-Ferrero, Emilio Palomares