Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells

Nature Energy Springer Nature 9:1 (2023) 70-80

Authors:

Junke Wang, Lewei Zeng, Dong Zhang, Aidan Maxwell, Hao Chen, Kunal Datta, Alessandro Caiazzo, Willemijn HM Remmerswaal, Nick RM Schipper, Zehua Chen, Kevin Ho, Akash Dasgupta, Gunnar Kusch, Riccardo Ollearo, Laura Bellini, Shuaifeng Hu, Zaiwei Wang, Chongwen Li, Sam Teale, Luke Grater, Bin Chen, Martijn M Wienk, Rachel A Oliver, Henry J Snaith, René AJ Janssen, Edward H Sargent

Abstract:

Monolithic all-perovskite triple-junction solar cells have the potential to deliver power conversion efficiencies beyond those of state-of-art double-junction tandems and well beyond the detailed-balance limit for single junctions. Today, however, their performance is limited by large deficits in open-circuit voltage and unfulfilled potential in both short-circuit current density and fill factor in the wide-bandgap perovskite sub cell. Here we find that halide heterogeneity—present even immediately following materials synthesis—plays a key role in interfacial non-radiative recombination and collection efficiency losses under prolonged illumination for Br-rich perovskites. We find that a diammonium halide salt, propane-1,3-diammonium iodide, introduced during film fabrication, improves halide homogenization in Br-rich perovskites, leading to enhanced operating stability and a record open-circuit voltage of 1.44 V in an inverted (p–i–n) device; ~86% of the detailed-balance limit for a bandgap of 1.97 eV. The efficient wide-bandgap sub cell enables the fabrication of monolithic all-perovskite triple-junction solar cells with an open-circuit voltage of 3.33 V and a champion PCE of 25.1% (23.87% certified quasi-steady-state efficiency).

Triisopropylsilylethynyl-Functionalized Anthracene-Based Hole Transport Materials for Efficient Hybrid Lead Halide Perovskite Solar Cells

Chemistry of Materials American Chemical Society (ACS) 35:21 (2023) 9378-9389

Authors:

Ece Aktas, Thi Huong Le, Michel Frigoli, Guixiang Li, Hans Köbler, Johan Liotier, Antonio J Riquelme, Antonio Abate, Renaud Demadrille, Emilio Palomares

Thermal Management Enables Stable Perovskite Nanocrystal Light‐Emitting Diodes with Novel Hole Transport Material (Small 45/2023)

Small Wiley 19:45 (2023)

Authors:

Xinyu Shen, Seon Lee Kwak, Woo Hyeon Jeong, Ji Won Jang, Zhongkai Yu, Hyungju Ahn, Hea Jung Park, Hyosung Choi, Sung Heum Park, Henry J Snaith, Do‐Hoon Hwang, Bo Ram Lee

Benzylamine Passivation of Wide-Bandgap Perovskite

Fundacio Scito (2023)

Authors:

Suer Zhou, Henry Snaith, Yangwei Shi, Joel Smith, James Drysdale, Benjamin Gallant, Margherita Taddei, Harry Sansom, Junxiang Zhang, Stephen Barlow, Akash Dasgupta, Ashley Marshall, Jian Wang, David Ginger, Seth Marder, Declan McCarthy

Stabilizing non-IPR C2(13333)-C74 cage with Lu2C2/Lu2O: the importance of encaged non-metallic elements

Chemical Communications Royal Society of Chemistry (RSC) (2023)

Authors:

Pengwei Yu, Mengyang Li, Shuaifeng Hu, Changwang Pan, Wangqiang Shen, Kun GUO, Yun-Peng Xie, Lipiao Bao, Rui Zhang, Xing Lu

Abstract:

The difference in encaged non-metallic element (i.e., C2 versus O) leads to clear change of intramolecular interactions and shifts in redox potentials of Lu2C2@C2(13333)-C74 and Lu2O@C2(13333)-C74, as a result of...