Suppressed phase segregation for triple-junction perovskite solar cells.
Abstract:
The tunable bandgaps and facile fabrication of perovskites make them attractive for multi-junction photovoltaics1,2. However, light-induced phase segregation limits their efficiency and stability3-5: this occurs in wide-bandgap (>1.65 electron volts) iodide/bromide mixed perovskite absorbers, and becomes even more acute in the top cells of triple-junction solar photovoltaics that require a fully 2.0-electron-volt bandgap absorber2,6. Here we report that lattice distortion in iodide/bromide mixed perovskites is correlated with the suppression of phase segregation, generating an increased ion-migration energy barrier arising from the decreased average interatomic distance between the A-site cation and iodide. Using an approximately 2.0-electron-volt rubidium/caesium mixed-cation inorganic perovskite with large lattice distortion in the top subcell, we fabricated all-perovskite triple-junction solar cells and achieved an efficiency of 24.3 per cent (23.3 per cent certified quasi-steady-state efficiency) with an open-circuit voltage of 3.21 volts. This is, to our knowledge, the first reported certified efficiency for perovskite-based triple-junction solar cells. The triple-junction devices retain 80 per cent of their initial efficiency following 420 hours of operation at the maximum power point.Alumina nanoparticle interfacial buffer layer for low-bandgap lead-tin perovskite solar cells
Abstract:
Mixed lead-tin (Pb:Sn) halide perovskites are promising absorbers with narrow-bandgaps (1.25–1.4 eV) suitable for high-efficiency all-perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat-Pb counterparts. This is partly due to the rapid crystallization of Sn-based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution-based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non-continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron-transport layer, which is only tens of nanometres in thickness is improved. The overall maximum-power-point-tracked efficiency improves by 65% and the steady-state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six-fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h.Ultranarrow linewidth room-temperature single-photon source from perovskite quantum dot embedded in optical microcavity
Photovoltaic performance of FAPbI3 perovskite is hampered by intrinsic quantum confinement
Abstract:
Formamidinium lead trioiodide (FAPbI3) is a promising perovskite for single-junction solar cells. However, FAPbI3 is metastable at room temperature and can cause intrinsic quantum confinement effects apparent through a series of above-bandgap absorption peaks. Here, we explore three common solution-based film-fabrication methods, neat N,N-dimethylformamide (DMF)–dimethyl sulfoxide (DMSO) solvent, DMF-DMSO with methylammonium chloride, and a sequential deposition approach. The latter two offer enhanced nucleation and crystallization control and suppress such quantum confinement effects. We show that elimination of these absorption features yields increased power conversion efficiencies (PCEs) and short-circuit currents, suggesting that quantum confinement hinders charge extraction. A meta-analysis of literature reports, covering 244 articles and 825 photovoltaic devices incorporating FAPbI3 films corroborates our findings, indicating that PCEs rarely exceed a 20% threshold when such absorption features are present. Accordingly, ensuring the absence of these absorption features should be the first assessment when designing fabrication approaches for high-efficiency FAPbI3 solar cells.