Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Perovskite crystallisation graphic

Dr. Nakita K Noel

EPSRC Research Fellow

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Novel Energy Materials and Advanced Characterisation
  • Advanced Device Concepts for Next-Generation Photovoltaics
nakita.noel@physics.ox.ac.uk
Telephone: 01865 (2)72401
Robert Hooke Building, room G20
  • About
  • Publications

Steering perovskite precursor solutions for multijunction photovoltaics

Nature Nature Research (2024)

Authors:

Shuaifeng Hu, Junke Wang, Pei Zhao, Jorge Pascual, Jianan Wang, Florine Rombach, Akash Dasgupta, Wentao Liu, Minh Anh Truong, He Zhu, Manuel Kober-Czerny, James N Drysdale, Joel A Smith, Zhongcheng Yuan, Guus JW Aalbers, Nick RM Schipper, Jin Yao, Kyohei Nakano, Silver-Hamill Turren-Cruz, André Dallmann, M Greyson Christoforo, James M Ball, David P McMeekin, Karl-Augustin Zaininger, Zonghao Liu, Nakita K Noel, Keisuke Tajima, Wei Chen, Masahiro Ehara, René AJ Janssen, Atsushi Wakamiya, Henry J Snaith

Abstract:

Multijunction photovoltaics (PVs) are gaining prominence owing to their superior capability of achieving power conversion efficiencies (PCEs) beyond the radiative limit of single-junction cells<sup>1-8</sup>, where improving narrow bandgap tin-lead perovskites is critical for thin-film devices<sup>9</sup>. With a focus on understanding the chemistry of tin-lead perovskite precursor solutions, we herein find that Sn(II) species dominate interactions with precursors and additives and uncover the exclusive role of carboxylic acid in regulating solution colloidal properties and film crystallisation, and ammonium in improving film optoelectronic properties. Materials that combine these two function groups, amino acid salts, considerably improve the semiconducting quality and homogeneity of perovskite films, surpassing the effect of the individual functional groups when introduced as part of separate molecules. Our enhanced tin-lead perovskite layer allows us to fabricate solar cells with PCEs of 23.9, 29.7 (certified 29.26%), and 28.7% for single-, double-, and triple-junction devices, respectively. Our 1-cm<sup>2</sup> triple-junction devices show PCEs of 28.4% (certified 27.28%). Encapsulated triple-junction cells maintain 80% of their initial efficiencies after 860 h maximum power point tracking in ambient. We further fabricate quadruple-junction devices and obtain PCEs of 27.9% with the highest open-circuit voltage of 4.94 V. This work establishes a new benchmark for multijunction PVs.
More details from the publisher
Details from ORA
More details
More details

A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells

Nature Communications Nature Research 15:1 (2024) 10110

Authors:

Benjamin M Gallant, Philippe Holzhey, Joel A Smith, Saqlain Choudhary, Karim A Elmestekawy, Pietro Caprioglio, Igal Levine, Alexandra A Sheader, Esther Y-H Hung, Fengning Yang, Daniel TW Toolan, Rachel C Kilbride, Karl-Augustin Zaininger, James M Ball, M Greyson Christoforo, Nakita K Noel, Laura M Herz, Dominik J Kubicki, Henry J Snaith

Abstract:

Perovskite solar cells (PSCs) offer an efficient, inexpensive alternative to current photovoltaic technologies, with the potential for manufacture via high-throughput coating methods. However, challenges for commercial-scale solution-processing of metal-halide perovskites include the use of harmful solvents, the expense of maintaining controlled atmospheric conditions, and the inherent instabilities of PSCs under operation. Here, we address these challenges by introducing a high volatility, low toxicity, biorenewable solvent system to fabricate a range of 2D perovskites, which we use as highly effective precursor phases for subsequent transformation to α-formamidinium lead triiodide (α-FAPbI3), fully processed under ambient conditions. PSCs utilising our α-FAPbI3 reproducibly show remarkable stability under illumination and elevated temperature (ISOS-L-2) and “damp heat” (ISOS-D-3) stressing, surpassing other state-of-the-art perovskite compositions. We determine that this enhancement is a consequence of the 2D precursor phase crystallisation route, which simultaneously avoids retention of residual low-volatility solvents (such as DMF and DMSO) and reduces the rate of degradation of FA+ in the material. Our findings highlight both the critical role of the initial crystallisation process in determining the operational stability of perovskite materials, and that neat FA+-based perovskites can be competitively stable despite the inherent metastability of the α-phase.
More details from the publisher
Details from ORA
More details
More details

Roadmap on established and emerging photovoltaics for sustainable energy conversion

Journal of Physics Energy IOP Publishing (2024)

Authors:

James C Blakesley, Ruy Sebastian Bonilla, Marina Freitag, Alex Ganose, Nicola Gasparini, Pascal Kaienburg, George Koutsourakis, Jonathan D Major, Jenny Nelson, Nakita K Noel, Bart Roose, Jae Sung Yun, Simon Aliwell, Pietro Altermatt, Tayebeh Ameri, Virgil Andrei, Ardalan Armin, Diego Bagnis, Jenny Baker, Hamish Beath, Mathieu Bellanger, Philippe Berrouard, Jochen Blumberger, Stuart Boden, Hugo Bronstein, Matthew J Carnie, Chris Case, Fernando A Castro, Yi-Ming Chang, Elmer Chao, Tracey M Clarke, Graeme Cooke, Pablo Docampo, Ken Durose, James Durrant, Marina Filip, Richard H Friend, Jarvist M Frost, Elizabeth Gibson, Alexander J Gillett, Pooja Goddard, Severin Habisreutinger, Martin Heeney, Arthur D Hendsbee, Louise Caroline Hirst, Saiful Islam, Imalka Jayawardena, Michael Johnston, Matthias Kauer, Jeff Kettle

Abstract:

<jats:title>Abstract</jats:title> <jats:p>Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO<jats:sub>2</jats:sub>eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TW<jats:sub>p</jats:sub> in 2021 to 8.5 TW<jats:sub>p</jats:sub> by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.</jats:p>
More details from the publisher
More details

A green solvent system for precursor phase-engineered sequential deposition of stable formamidinium lead triiodide for perovskite solar cells

(2024)

Authors:

Benjamin M Gallant, Philippe Holzhey, Joel A Smith, Saqlain Choudhary, Karim A Elmestekawy, Pietro Caprioglio, Igal Levine, Alex Sheader, Fengning Yang, Daniel TW Toolan, Rachel C Kilbride, Augustin KA Zaininger, James M Ball, M Greyson Christoforo, Nakita Noel, Laura M Herz, Dominik J Kubicki, Henry J Snaith
More details from the publisher
Details from ArXiV

Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss

Science American Association for the Advancement of Science 384:6697 (2024) 767-775

Authors:

Yen-Hung Lin, Vikram, Fengning Yang, Xue-Li Cao, Akash Dasgupta, Robert DJ Oliver, Aleksander M Ulatowski, Melissa M McCarthy, Xinyi Shen, Qimu Yuan, M Greyson Christoforo, Fion Sze Yan Yeung, Michael B Johnston, Nakita K Noel, Laura M Herz, M Saiful Islam, Henry J Snaith

Abstract:

The efficiency and longevity of metal-halide perovskite solar cells are typically dictated by nonradiative defect-mediated charge recombination. In this work, we demonstrate a vapor-based amino-silane passivation that reduces photovoltage deficits to around 100 millivolts (>90% of the thermodynamic limit) in perovskite solar cells of bandgaps between 1.6 and 1.8 electron volts, which is crucial for tandem applications. A primary-, secondary-, or tertiary-amino–silane alone negatively or barely affected perovskite crystallinity and charge transport, but amino-silanes that incorporate primary and secondary amines yield up to a 60-fold increase in photoluminescence quantum yield and preserve long-range conduction. Amino-silane–treated devices retained 95% power conversion efficiency for more than 1500 hours under full-spectrum sunlight at 85°C and open-circuit conditions in ambient air with a relative humidity of 50 to 60%.

More details from the publisher
Details from ORA
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet