Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Perovskite crystallisation graphic

Dr. Nakita K Noel

EPSRC Research Fellow

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Novel Energy Materials and Advanced Characterisation
  • Advanced Device Concepts for Next-Generation Photovoltaics
nakita.noel@physics.ox.ac.uk
Telephone: 01865 (2)72401
Robert Hooke Building, room G20
  • About
  • Publications

Solution-Processed All-Perovskite Multi-Junction Solar Cells

Fundacio Scito (2019)

Authors:

David McMeekin, Suhas Mahesh, Nakita Noel, Matthew Klug, JongChul Lim, Jonathan Warby, James Ball, Laura Herz, Michael Johnston, Henry Snaith
More details from the publisher

Solution-processed all-perovskite multi-junction solar cells

Joule Elsevier 3:2 (2019) 387-401

Authors:

David McMeekin, Suhas Mahesh, Nakita Noel, Matthew Klug, Jongchul Lim, Jonathan Warby, James Ball, Laura Herz, Michael Johnston, Henry Snaith
More details from the publisher
Details from ORA
More details

Facile synthesis of stable and highly luminescent methylammonium lead halide nanocrystals for efficient light emitting devices

Journal of the American Chemical Society American Chemical Society 141:3 (2019) 1269-1279

Authors:

Yasser Hassan, Olivia J Ashton, JH Park, G Li, Nobuya Sakai, Bernard Wenger, Amir-Abbas Haghighirad, Nakita K Noel, MH Song, BR Lee, RH Friend, HJ Snaith

Abstract:

Metal halide perovskites are promising candidates for use in light emitting diodes (LEDs), due to their potential for color tunable and high luminescence efficiency. While recent advances in perovskite-based light emitting diodes have resulted in external quantum efficiencies exceeding 12.4% for the green emitters, and infrared emitters based on 3D/2D mixed dimensional perovskites have exceeded 20%, the external quantum efficiencies of the red and blue emitters still lag behind. A critical issue to date is creating highly emissive and stable perovskite emitters with the desirable emission band gap to achieve full-color displays and white LEDs. Herein, we report the preparation and characterization of a highly luminescent and stable suspension of cubic-shaped methylammonium lead triiodide (CH3NH3PbI3) perovskite nanocrystals, where we synthesize the nanocrystals via a ligand-assisted reprecipitation technique, using an acetonitrile/methylamine compound solvent system to solvate the ions and toluene as the antisolvent to induce crystallization. Through tuning the ratio of the ligands, the ligand to toluene ratio, and the temperature of the toluene, we obtain a solution of CH3NH3PbI3 nanocrystals with a photoluminescence quantum yield exceeding 93% and tunable emission between 660 and 705 nm. We also achieved red emission at 635 nm by blending the nanocrystals with bromide salt and obtained perovskite-based light emitting diodes with maximum electroluminescent external quantum efficiency of 2.75%.
More details from the publisher
Details from ORA
More details
More details

Mixed Lead-Tin Halide Perovskites for Efficient and Wavelength-Tunable Near-Infrared Light-Emitting Diodes.

Advanced materials (Deerfield Beach, Fla.) 31:3 (2019) e1806105

Authors:

Weiming Qiu, Zhengguo Xiao, Kwangdong Roh, Nakita K Noel, Andrew Shapiro, Paul Heremans, Barry P Rand

Abstract:

Near-infrared (NIR) light-emitting diodes (LEDs), with emission wavelengths between 800 and 950 nm, are useful for various applications, e.g., night-vision devices, optical communication, and medical treatments. Yet, devices using thin film materials like organic semiconductors and lead based colloidal quantum dots face certain fundamental challenges that limit the improvement of external quantum efficiency (EQE), making the search of alternative NIR emitters important for the community. In this work, efficient NIR LEDs with tunable emission from 850 to 950 nm, using lead-tin (Pb-Sn) halide perovskite as emitters are demonstrated. The best performing device exhibits an EQE of 5.0% with a peak emission wavelength of 917 nm, a turn-on voltage of 1.65 V, and a radiance of 2.7 W Sr-1 m-2 when driven at 4.5 V. The emission spectra of mixed Pb-Sn perovskites are tuned either by changing the Pb:Sn ratio or by incorporating bromide, and notably exhibit no phase separation during device operation. The work demonstrates that mixed Pb-Sn perovskites are promising next generation NIR emitters.
More details from the publisher
More details
More details

Elucidating the long-range charge carrier mobility in metal halide perovskite thin films

(2018)

Authors:

Jongchul Lim, Maximilian T Hoerantner, Nobuya Sakai, James M Ball, Suhas Mahesh, Nakita K Noel, Yen-Hung Lin, Jay B Patel, David P McMeekin, Michael B Johnston, Bernard Wenger, Henry J Snaith
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet