Elucidating the long-range charge carrier mobility in metal halide perovskite thin films
Energy and Environmental Science Royal Society of Chemistry 12:1 (2018) 169-176
Abstract:
Many optoelectronic properties have been reported for lead halide perovskite polycrystalline films. However, ambiguities in the evaluation of these properties remain, especially for long-range lateral charge transport, where ionic conduction can complicate interpretation of data. Here we demonstrate a new technique to measure the long-range charge carrier mobility in such materials. We combine quasi-steady-state photo-conductivity measurements (electrical probe) with photo-induced transmission and reflection measurements (optical probe) to simultaneously evaluate the conductivity and charge carrier density. With this knowledge we determine the lateral mobility to be ∼2 cm2 V−1 s−1 for CH3NH3PbI3 (MAPbI3) polycrystalline perovskite films prepared from the acetonitrile/methylamine solvent system. Furthermore, we present significant differences in long-range charge carrier mobilities, from 2.2 to 0.2 cm2 V−1 s−1, between films of contemporary perovskite compositions prepared via different fabrication processes, including solution and vapour phase deposition techniques. Arguably, our work provides the first accurate evaluation of the long-range lateral charge carrier mobility in lead halide perovskite films, with charge carrier density in the range typically achieved under photovoltaic operation.Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells
ACS Energy Letters American Chemical Society (ACS) 3:10 (2018) 2472-2476
Perovskite based optoelectronics: molecular design perspectives – a themed collection
Molecular Systems Design & Engineering Royal Society of Chemistry (RSC) 3:5 (2018) 700-701
Unravelling the improved electronic and structural properties of methylammonium lead iodide deposited from acetonitrile
Chemistry of Materials American Chemical Society 30:21 (2018) 7737-7743
Abstract:
Perovskite-based photovoltaics are an emerging solar technology with lab scale device efficiencies of over 22 %, and significant steps are being made toward their commercialization. Conventionally high efficiency perovskite solar cells are formed from high boiling point, polar aprotic solvent solutions. Methylammonium lead iodide (CH3NH3PbI3) films can be made from a range of solvents and blends; however, the role the solvent system plays in determining the properties of the resulting perovskite films is poorly understood. Acetonitrile (ACN), in the presence of methylamine (MA), is a viable nontoxic solvent for fabrication of CH3NH3PbI3 photovoltaic devices with efficiencies >18 %. Herein we examine films prepared from ACN/MA and dimethylformamide (DMF) and scrutinize their physical and electronic properties using spectroscopy, scanning probe imaging, and ion scattering. Significant differences are observed in the chemistry and electronic structure of CH3NH3PbI3 films made with each solvent, ACN/MA produces films with superior properties resulting in more efficient photovoltaic devices. Here we present a holistic and complete understanding of a high performance perovskite material from an electronic, physical, and structural perspective and establish a robust toolkit with which to understand and optimize photovoltaic perovskites.Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency
Molecular Systems Design and Engineering Royal Society of Chemistry 3:5 (2018) 741-747