Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Perovskite crystallisation graphic

Dr. Nakita K Noel

EPSRC Research Fellow

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Novel Energy Materials and Advanced Characterisation
  • Advanced Device Concepts for Next-Generation Photovoltaics
nakita.noel@physics.ox.ac.uk
Telephone: 01865 (2)72401
Robert Hooke Building, room G20
  • About
  • Publications

Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals.

Nature Communications Springer Nature 8 (2017) 590

Authors:

Bernard Wenger, Pabitra Nayak, X Wen, Sameer V Kesava, Nakita K Noel, Henry J Snaith

Abstract:

Ultralow trap densities, exceptional optical and electronic properties have been reported for lead halide perovskites single crystals; however, ambiguities in basic properties, such as the band gap, and the electronic defect densities in the bulk and at the surface prevail. Here, we synthesize single crystals of methylammonium lead bromide (CH3NH3PbBr3), characterise the optical absorption and photoluminescence and show that the optical properties of single crystals are almost identical to those of polycrystalline thin films. We observe significantly longer lifetimes and show that carrier diffusion plays a substantial role in the photoluminescence decay. Contrary to many reports, we determine that the trap density in CH3NH3PbBr3 perovskite single crystals is 1015 cm-3, only one order of magnitude lower than in the thin films. Our enhanced understanding of optical properties and recombination processes elucidates ambiguities in earlier reports, and highlights the discrepancies in the estimation of trap densities from electronic and optical methods.Metal halide perovskites for optoelectronic devices have been extensively studied in two forms: single-crystals or polycrystalline thin films. Using spectroscopic approaches, Wenger et al. show that polycrystalline thin films possess similar optoelectronic properties to single crystals.
More details from the publisher
Details from ORA
More details
More details

Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals

Joule Elsevier 1:1 (2017) 155-167

Authors:

Roberto Brenes, Dengyang Guo, Anna Osherov, Nakita K Noel, Christopher Eames, Eline M Hutter, Sandeep K Pathak, Farnaz Niroui, Richard H Friend, M Saiful Islam, Henry J Snaith, Vladimir Bulović, Tom J Savenije, Samuel D Stranks
More details from the publisher

Efficient and stable perovskite solar cells using molybdenum tris(dithiolene)s as p-dopants for spiro-OMeTAD

ACS Energy Letters American Chemical Society 2:9 (2017) 2044-2050

Authors:

Alba Pellaroque, Nakita K Noel, Severin N Habisreutinger, Y Zhang, S Barlow, Marder, Henry J Snaith

Abstract:

Metal halide perovskite solar cells have now reached efficiencies of over 22%. To date, the most efficient perovskite solar cells have the n-i-p device architecture and use 2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-spirobifluorene or poly(triarylamine) as the hole transport material (HTM), which are typically doped with lithium bis((trifluomethyl)sulfonyl)amide (Li-TFSI). Li-TFSI is hygroscopic and detrimental to the long-term performance of the solar cells, limiting its practical use. In this work, we successfully replace Li-TFSI by molybdenum tris(1-(methoxycarbonyl)-2-(trifluoromethyl)ethane-1,2-dithiolene), Mo(tfd-CO2Me)3, or molybdenum tris(1-(trifluoroacetyl)-2-(trifluoromethyl)ethane-1,2-dithiolene), Mo(tfd-COCF3)3. With these two dopants, we achieve stabilized power conversion efficiencies up to 16.7% and 15.7% with average efficiencies of 14.8% ± 1.1% and 14.4% ± 1.2%, respectively. Moreover, we observe a significant enhancement of the long-term stability of perovskite solar cells under 85 °C thermal stressing in air.
More details from the publisher
Details from ORA
More details
More details

Crystallization kinetics and morphology control of formamidinium-cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution

Advanced Materials Wiley 29:29 (2017) 1-8

Authors:

David McMeekin, Zhiping Wang, Waqaas Rehman, F Pulvirenti, Jay B Patel, Nakita K Noel, Michael B Johnston, Marder, Laura Herz, Henry J Snaith

Abstract:

The meteoric rise of the field of perovskite solar cells has been fueled by the ease with which a wide range of high-quality materials can be fabricated via simple solution processing methods. However, to date, little effort has been devoted to understanding the precursor solutions, and the role of additives such as hydrohalic acids upon film crystallization and final optoelectronic quality. Here, a direct link between the colloids concentration present in the [HC(NH2 )2 ]0.83 Cs0.17 Pb(Br0.2 I0.8 )3 precursor solution and the nucleation and growth stages of the thin film formation is established. Using dynamic light scattering analysis, the dissolution of colloids over a time span triggered by the addition of hydrohalic acids is monitored. These colloids appear to provide nucleation sites for the perovskite crystallization, which critically impacts morphology, crystal quality, and optoelectronic properties. Via 2D X-ray diffraction, highly ordered and textured crystals for films prepared from solutions with lower colloidal concentrations are observed. This increase in material quality allows for a reduction in microstrain along with a twofold increase in charge-carrier mobilities leading to values exceeding 20 cm(2) V(-1) s(-1) . Using a solution with an optimized colloidal concentration, devices that reach current-voltage measured power conversion efficiency of 18.8% and stabilized efficiency of 17.9% are fabricated.
More details from the publisher
Details from ORA
More details
More details

(Invited) Polymer Wrapped Carbon Nanotubes As Highly Effective Hole Transporting Layers for New Perovskite and Quantum Dot Photovoltaic Devices

ECS Meeting Abstracts The Electrochemical Society MA2017-01:7 (2017) 586-586

Authors:

Robin J Nicholas, Severin N Habisreutinger, Nakita K Noel, Henry J Snaith, Andrew Watt, Yujiro Tazawa, Nanlin Zhang
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet