Enhanced Stability and Chaotic Condensates in Multispecies Nonreciprocal Mixtures.
Physical review letters 134:14 (2025) 148301
Abstract:
Random nonreciprocal interactions between a large number of conserved densities are shown to enhance the stability of the system toward pattern formation. The enhanced stability is an exact result when the number of species approaches infinity and is confirmed numerically by simulations of the multispecies nonreciprocal Cahn-Hilliard model. Furthermore, the diversity in dynamical patterns increases with an increasing number of components, and novel steady states such as pulsating or spatiotemporally chaotic condensates are observed. Our results may help to unravel the mechanisms by which living systems self-organize via metabolism.A closed band-projected density algebra must be Girvin-MacDonald-Platzman
Physical Review Letters American Physical Society 134 (2025) 136502
Abstract:
The band-projected density operators in a Landau level obey the Girvin-MacDonald-Platzman (GMP) algebra, and a large amount of effort in the study of fractional Chern insulators has been directed toward approximating this algebra in a Chern band. In this Letter, we prove that the GMP algebra, up to form factors, is the only closed algebra that projected density operators can satisfy in two and three dimensions, highlighting the central place it occupies in the study of Chern bands in general. A number of interesting corollaries follow.