Pivoting through the chiral-clock family
SciPost Physics SciPost 18 (2025) 094
Abstract:
The Onsager algebra, invented to solve the two-dimensional Ising model, can be used to construct conserved charges for a family of integrable $N$-state chiral clock models. We show how it naturally gives rise to a "pivot" procedure for this family of chiral Hamiltonians. These Hamiltonians have an anti-unitary CPT symmetry that when combined with the usual $\mathbb{Z}_N$ clock symmetry gives a non-abelian dihedral symmetry group $D_{2N}$. We show that this symmetry gives rise to symmetry-protected topological (SPT) order in this family for all even $N$, and representation-SPT (RSPT) physics for all odd $N$. The simplest such example is a next-nearest-neighbour chain generalising the spin-1/2 cluster model, an SPT phase of matter. We derive a matrix-product state representation of its fixed-point ground state along with the ensuing entanglement spectrum and symmetry fractionalisation. We analyse a rich phase diagram combining this model with the Onsager-integrable chiral Potts chain, and find trivial, symmetry-breaking and (R)SPT orders, as well as extended gapless regions. For odd $N$, the phase transitions are "unnecessarily" critical from the SPT point of view.Phase Diagram of the Non-Reciprocal Cahn-Hilliard Model and the Effects of Symmetry
(2025)
Operator dynamics in Floquet many-body systems
Physical Review B American Physical Society (APS) 111:9 (2025) 094316
Phase coexistence in nonreciprocal quorum-sensing active matter
Physical Review Research American Physical Society (APS) 7:1 (2025) 013234
Tunneling in a Lorenz-like model for an active wave-particle entity
Physical Review E American Physical Society (APS) 111:3 (2025) 034218