Operator spreading in random unitary circuits
Physical Review X American Physical Society 8:2 (2018) 021014
Abstract:
Random quantum circuits yield minimally structured models for chaotic quantum dynamics, which are able to capture, for example, universal properties of entanglement growth. We provide exact results and coarse-grained models for the spreading of operators by quantum circuits made of Haar-random unitaries. We study both 1+1D and higher dimensions and argue that the coarse-grained pictures carry over to operator spreading in generic many-body systems. In 1+1D, we demonstrate that the out-of-time-order correlator (OTOC) satisfies a biased diffusion equation, which gives exact results for the spatial profile of the OTOC and determines the butterfly speed vB. We find that in 1+1D, the “front” of the OTOC broadens diffusively, with a width scaling in time as t1/2. We address fluctuations in the OTOC between different realizations of the random circuit, arguing that they are negligible in comparison to the broadening of the front within a realization. Turning to higher dimensions, we show that the averaged OTOC can be understood exactly via a remarkable correspondence with a purely classical droplet growth problem. This implies that the width of the front of the averaged OTOC scales as t1/3 in 2+1D and as t0.240 in 3+1D (exponents of the Kardar-Parisi-Zhang universality class). We support our analytic argument with simulations in 2+1D. We point out that, in two or higher spatial dimensions, the shape of the spreading operator at late times is affected by underlying lattice symmetries and, in general, is not spherical. However, when full spatial rotational symmetry is present in 2+1D, our mapping implies an exact asymptotic form for the OTOC, in terms of the Tracy-Widom distribution. For an alternative perspective on the OTOC in 1+1D, we map it to the partition function of an Ising-like statistical mechanics model. As a result of special structure arising from unitarity, this partition function reduces to a random walk calculation which can be performed exactly. We also use this mapping to give exact results for entanglement growth in 1+1D circuits.Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly
Journal of Chemical Physics AIP Publishing 148:13 (2018) 134910
Abstract:
Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.Structure of edge-state inner products in the fractional quantum Hall effect
Physical Review B American Physical Society 97:15 (2018) 155108
Abstract:
We analyze the inner products of edge state wave functions in the fractional quantum Hall effect, specifically for the Laughlin and Moore-Read states. We use an effective description for these inner products given by a large-N expansion ansatz proposed in a recent work by J. Dubail, N. Read, and E. Rezayi [Phys. Rev. B 86, 245310 (2012)]. As noted by these authors, the terms in this ansatz can be constrained using symmetry, a procedure we perform to high orders. We then check this conjecture by calculating the overlaps exactly for small system sizes and compare the numerics with our high-order expansion. We find the effective description to be very accurate.Current fluctuations across a nano-pore.
Journal of physics. Condensed matter : an Institute of Physics journal 30:13 (2018) 134001
Abstract:
The frequency-dependent spectrum of current fluctuations through nano-scale channels is studied using analytical and computational techniques. Using a stochastic Nernst-Planck description and neglecting the interactions between the ions inside the channel, an expression is derived for the current fluctuations, assuming that the geometry of the channel can be incorporated through the lower limits for various wave-vector modes. Since the resulting expression turns out to be quite complex, a number of further approximations are discussed such that relatively simple expressions can be used for practical purposes. The analytical results are validated using Langevin dynamics simulations.Multigenerational memory and adaptive adhesion in early bacterial biofilm communities.
Proceedings of the National Academy of Sciences of the United States of America 115:17 (2018) 4471-4476