Universal Broadening of the Light Cone in Low-Temperature Transport.
Physical review letters 120:17 (2018) 176801
Abstract:
We consider the low-temperature transport properties of critical one-dimensional systems that can be described, at equilibrium, by a Luttinger liquid. We focus on the prototypical setting where two semi-infinite chains are prepared in two thermal states at small but different temperatures and suddenly joined together. At large distances x and times t, conformal field theory characterizes the energy transport in terms of a single light cone spreading at the sound velocity v. Energy density and current take different constant values inside the light cone, on its left, and on its right, resulting in a three-step form of the corresponding profiles as a function of ζ=x/t. Here, using a nonlinear Luttinger liquid description, we show that for generic observables this picture is spoiled as soon as a nonlinearity in the spectrum is present. In correspondence of the transition points x/t=±v, a novel universal region emerges at infinite times, whose width is proportional to the temperatures on the two sides. In this region, expectation values have a different temperature dependence and show smooth peaks as a function of ζ. We explicitly compute the universal function describing such peaks. In the specific case of interacting integrable models, our predictions are analytically recovered by the generalized hydrodynamic approach.Emergent SO(5) symmetry at the columnar ordering transition in the classical cubic dimer model
(2018)
Phoresis and enhanced diffusion compete in enzyme chemotaxis
Nano Letters American Chemical Society 18:4 (2018) 2711-2717
Abstract:
Chemotaxis of enzymes in response to gradients in the concentration of their substrate has been widely reported in recent experiments, but a basic understanding of the process is still lacking. Here, we develop a microscopic theory for chemotaxis that is valid for enzymes and other small molecules. Our theory includes both nonspecific interactions between enzyme and substrate as well as complex formation through specific binding between the enzyme and the substrate. We find that two distinct mechanisms contribute to enzyme chemotaxis: a diffusiophoretic mechanism due to the nonspecific interactions and a new type of mechanism due to binding-induced changes in the diffusion coefficient of the enzyme. The latter chemotactic mechanism points toward lower substrate concentration if the substrate enhances enzyme diffusion and toward higher substrate concentration if the substrate inhibits enzyme diffusion. For a typical enzyme, attractive phoresis and binding-induced enhanced diffusion will compete against each other. We find that phoresis dominates above a critical substrate concentration, whereas binding-induced enhanced diffusion dominates for low substrate concentration. Our results resolve an apparent contradiction regarding the direction of urease chemotaxis observed in experiments and, in general, clarify the relation between the enhanced diffusion and the chemotaxis of enzymes. Finally, we show that the competition between the two distinct chemotactic mechanisms may be used to engineer nanomachines that move toward or away from regions with a specific substrate concentration.Size constraints on a Majorana beam-splitter interferometer: Majorana coupling and surface-bulk scattering
Physical Review B American Physical Society 97:11 (2018) 115424