Non-Poissonian Bursts in the Arrival of Phenotypic Variation Can Strongly Affect the Dynamics of Adaptation
Molecular Biology and Evolution Oxford University Press 41:6 (2024) msae085
Abstract:
Modeling the rate at which adaptive phenotypes appear in a population is a key to predicting evolutionary processes. Given random mutations, should this rate be modeled by a simple Poisson process, or is a more complex dynamics needed? Here we use analytic calculations and simulations of evolving populations on explicit genotype–phenotype maps to show that the introduction of novel phenotypes can be “bursty” or overdispersed. In other words, a novel phenotype either appears multiple times in quick succession or not at all for many generations. These bursts are fundamentally caused by statistical fluctuations and other structure in the map from genotypes to phenotypes. Their strength depends on population parameters, being highest for “monomorphic” populations with low mutation rates. They can also be enhanced by additional inhomogeneities in the mapping from genotypes to phenotypes. We mainly investigate the effect of bursts using the well-studied genotype–phenotype map for RNA secondary structure, but find similar behavior in a lattice protein model and in Richard Dawkins’s biomorphs model of morphological development. Bursts can profoundly affect adaptive dynamics. Most notably, they imply that fitness differences play a smaller role in determining which phenotype fixes than would be the case for a Poisson process without bursts.Conformal field theory approach to parton fractional quantum Hall trial wave functions
Physical Review B American Physical Society (APS) 109:20 (2024) 205128
Entropy production and thermodynamic inference for stochastic microswimmers
Physical Review Research American Physical Society (APS) 6:2 (2024) l022044
Exploring Simplicity Bias in 1D Dynamical Systems.
Entropy (Basel, Switzerland) 26:5 (2024) 426
Abstract:
Arguments inspired by algorithmic information theory predict an inverse relation between the probability and complexity of output patterns in a wide range of input-output maps. This phenomenon is known as simplicity bias. By viewing the parameters of dynamical systems as inputs, and the resulting (digitised) trajectories as outputs, we study simplicity bias in the logistic map, Gauss map, sine map, Bernoulli map, and tent map. We find that the logistic map, Gauss map, and sine map all exhibit simplicity bias upon sampling of map initial values and parameter values, but the Bernoulli map and tent map do not. The simplicity bias upper bound on the output pattern probability is used to make a priori predictions regarding the probability of output patterns. In some cases, the predictions are surprisingly accurate, given that almost no details of the underlying dynamical systems are assumed. More generally, we argue that studying probability-complexity relationships may be a useful tool when studying patterns in dynamical systems.Stress-shape misalignment in confluent cell layers
Nature Communications Nature Research 15:1 (2024) 3628