Correlation function diagnostics for type-I fracton phases

(2017)

Authors:

Trithep Devakul, SA Parameswaran, SL Sondhi

Deconfined quantum critical points: Symmetries and dualities

Physical Review X American Physical Society 7:3 (2017) 031051

Authors:

C Wang, ADAM Nahum, MA Metlitski, C Xu, T Senthil

Abstract:

The deconfined quantum critical point (QCP), separating the Néel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of ð2 þ 1ÞD criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to N f ¼ 2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an Oð4Þ × Z T 2 symmetry. We propose several dualities for the deconfined QCP with SU(2) spin symmetry which together make natural the emergence of a previously suggested SO(5) symmetry rotating the Néel and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated infrared theories can also be viewed as surface descriptions of ð3 þ 1ÞD topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.

Deconfinement transitions in a generalised XY model

Journal of Physics A: Mathematical and Theoretical IOP Publishing 50:42 (2017) 424003-424003

Authors:

P Serna, John T Chalker, Paul Fendley

Abstract:

We find the complete phase diagram of a generalised XY model that includes half-vortices. The model possesses superfluid, pair-superfluid and disordered phases, separated by Kosterlitz–Thouless (KT) transitions for both the half-vortices and ordinary vortices, as well as an Ising-type transition. There also occurs an unusual deconfining phase transition, where the disordered to superfluid transition is of Ising rather than KT type. We show by analytical arguments and extensive numerical simulations that there is a point in the phase diagram where the KT transition line meets the deconfining Ising phase transition. We find that the latter extends into the disordered phase not as a phase transition, but rather solely as a deconfinement transition. It is best understood in the dual height model, where on one side of the transition height steps are bound into pairs while on the other they are unbound. We also extend the phase diagram of the dual model, finding both $O(2)$ loop model and antiferromagnetic Ising transitions.

Transport in out-of-equilibrium XXZ chains: Nonballistic behavior and correlation functions

PHYSICAL REVIEW B American Physical Society (APS) 96:11 (2017) ARTN 115124

Authors:

Lorenzo Piroli, Jacopo De Nardis, Mario Collura, Bruno Bertini, Maurizio Fagotti

Abstract:

© 2017 American Physical Society. We consider the nonequilibrium protocol where two semi-infinite gapped XXZ chains, initially prepared in different equilibrium states, are suddenly joined together. At large times, a generalized hydrodynamic description applies, according to which the system can locally be represented by space- and time-dependent stationary states. The magnetization displays an unusual behavior: depending on the initial state, its profile may exhibit abrupt jumps that can not be predicted directly from the standard hydrodynamic equations and which signal nonballistic spin transport. We ascribe this phenomenon to the structure of the local conservation laws and make a prediction for the exact location of the jumps. We find that the jumps propagate at the velocities of the heaviest quasiparticles. By means of time-dependent density matrix renormalization group simulations we show that our theory yields a complete description of the long-time steady profiles of conserved charges, currents, and local correlations.

Critical behavior of the extended Hubbard model with bond dimerization

Physica B: Condensed Matter Elsevier 536 (2017) 474-478

Authors:

S Ejima, F Lange, Fabian HL Essler, H Fehske

Abstract:

Exploiting the matrix-product-state based density-matrix renormalization group (DMRG) technique we study the one-dimensional extended (U-V) Hubbard model with explicit bond dimerization in the half-filled band sector. In particular we investigate the nature of the quantum phase transition, taking place with growing ratio V/U between the symmetry-protected-topological and charge-density-wave insulating states. The (weak-coupling) critical line of continuous Ising transitions with central charge c=1/2 terminates at a tricritical point belonging to the universality class of the dilute Ising model with c=7/10. We demonstrate that our DMRG data perfectly match with (tricritical) Ising exponents, e.g., for the order parameter β=1/8 (1/24) and correlation length ν=1 (5/9). Beyond the tricritical Ising point, in the strong-coupling regime, the quantum phase transition becomes first order.