Filling-enforced nonsymmorphic Kondo semimetals in two dimensions

Physical Review B 96:8 (2017)

Authors:

JH Pixley, S Lee, B Brandom, SA Parameswaran

Abstract:

© 2017 American Physical Society. We study the competition between Kondo screening and frustrated magnetism on the nonsymmorphic Shastry-Sutherland Kondo lattice at a filling of two conduction electrons per unit cell. This model is known to host a set of gapless partially Kondo screened phases intermediate between the Kondo-destroyed paramagnet and the heavy Fermi liquid. Based on crystal symmetries, we argue that (i) both the paramagnet and the heavy Fermi liquid are semimetals protected by a glide symmetry; and (ii) partial Kondo screening breaks the symmetry, removing this protection and allowing the partially Kondo screened phase to be deformed into a Kondo insulator via a Lifshitz transition. We confirm these results using large-N mean-field theory and then use nonperturbative arguments to derive a generalized Luttinger sum rule constraining the phase structure of two-dimensional nonsymmorphic Kondo lattices beyond the mean-field limit.

Theory of the Josephson Junction Laser

(2017)

Authors:

Steven H Simon, Nigel R Cooper

Electric-field-induced shape transition of nematic tactoids

Physical Review E American Physical Society 96 (2017) 022706

Authors:

Luuk Metselaar, I Dozov, K Antonova, E Belamie, P Davidson, Julia M Yeomans, Amin Doostmohammadi

Abstract:

The occurrence of new textures of liquid crystals is an important factor in tuning their optical and photonics properties. Here, we show, both experimentally and by numerical computation, that under an electric field chitin tactoids (i.e. nematic droplets) can stretch to aspect ratios of more than 15, leading to a transition from a spindle-like to a cigar-like shape. We argue that the large extensions occur because the elastic contribution to the free energy is dominated by the anchoring. We demonstrate that the elongation involves hydrodynamic flow and is reversible, the tactoids return to their original shapes upon removing the field.

Exact solution for the quench dynamics of a nested integrable system

Journal of Statistical Mechanics Theory and Experiment IOP Publishing 2017:8 (2017) 083103

Authors:

Márton Mestyán, Bruno Bertini, Lorenzo Piroli, Pasquale Calabrese

High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications.

Cytoskeleton (Hoboken, N.J.) 74:8 (2017) 283-296

Authors:

Stefan Golfier, Philipp Rosendahl, Alexander Mietke, Maik Herbig, Jochen Guck, Oliver Otto

Abstract:

The mechanical fingerprint of cells is inherently linked to the structure of the cytoskeleton and can serve as a label-free marker for cell homeostasis or pathologic states. How cytoskeletal composition affects the physical response of cells to external loads has been intensively studied with a spectrum of techniques, yet quantitative and statistically powerful investigations in the form of titration assays are hampered by the low throughput of most available methods. In this study, we employ real-time deformability cytometry (RT-DC), a novel microfluidic tool to examine the effects of biochemically modified F-actin and microtubule stability and nuclear chromatin structure on cell deformation in a human leukemia cell line (HL60). The high throughput of our method facilitates extensive titration assays that allow for significance assessment of the observed effects and extraction of half-maximal concentrations for most of the applied reagents. We quantitatively show that integrity of the F-actin cortex and microtubule network dominate cell deformation on millisecond timescales probed with RT-DC. Drug-induced alterations in the nuclear chromatin structure were not found to consistently affect cell deformation. The sensitivity of the high-throughput cell mechanical measurements to the cytoskeletal modifications we present in this study opens up new possibilities for label-free dose-response assays of cytoskeletal modifications.