Deconfined quantum critical points: Symmetries and dualities
Physical Review X American Physical Society 7:3 (2017) 031051
Abstract:
The deconfined quantum critical point (QCP), separating the Néel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of ð2 þ 1ÞD criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to N f ¼ 2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an Oð4Þ × Z T 2 symmetry. We propose several dualities for the deconfined QCP with SU(2) spin symmetry which together make natural the emergence of a previously suggested SO(5) symmetry rotating the Néel and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated infrared theories can also be viewed as surface descriptions of ð3 þ 1ÞD topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.Deconfinement transitions in a generalised XY model
Journal of Physics A: Mathematical and Theoretical IOP Publishing 50:42 (2017) 424003-424003
Abstract:
We find the complete phase diagram of a generalised XY model that includes half-vortices. The model possesses superfluid, pair-superfluid and disordered phases, separated by Kosterlitz–Thouless (KT) transitions for both the half-vortices and ordinary vortices, as well as an Ising-type transition. There also occurs an unusual deconfining phase transition, where the disordered to superfluid transition is of Ising rather than KT type. We show by analytical arguments and extensive numerical simulations that there is a point in the phase diagram where the KT transition line meets the deconfining Ising phase transition. We find that the latter extends into the disordered phase not as a phase transition, but rather solely as a deconfinement transition. It is best understood in the dual height model, where on one side of the transition height steps are bound into pairs while on the other they are unbound. We also extend the phase diagram of the dual model, finding both $O(2)$ loop model and antiferromagnetic Ising transitions.‘Fuelled’ motion: phoretic motility and collective behaviour of active colloids
Chemical Society Reviews Royal Society of Chemistry (RSC) 46:18 (2017) 5508-5518
Diffusion in Deterministic Interacting Lattice Systems
Physical Review Letters American Physical Society (APS) 119:11 (2017) 110603
Transport in out-of-equilibrium XXZ chains: Nonballistic behavior and correlation functions
PHYSICAL REVIEW B American Physical Society (APS) 96:11 (2017) ARTN 115124