Hydrodynamics of active systems

La Rivista del Nuovo Cimento Italian Physical Society 2017:1 (2016) 1-31

Abstract:

This is a series of four lectures presented at the 2015 Enrico Fermi Summer School in Varenna. The aim of the lectures is to give an introduction to the hydrodynamics of active matter concentrating on low-Reynolds-number examples such as cells and molecular motors. Lecture 1 introduces the hydrodynamics of single active particles, covering the Stokes equation and the Scallop Theorem, and stressing the link between autonomous activity and the dipolar symmetry of the far flow field. In lecture 2 I discuss applications of this mathematics to the behaviour of microswimmers at surfaces and in external flows, and describe our current understanding of how swimmers stir the surrounding fluid. Lecture 3 concentrates on the collective behaviour of active particles, modelled as an active nematic. I write down the equations of motion and motivate the form of the active stress. The resulting hydrodynamic instability leads to a state termed “active turbulence” characterised by strong jets and vortices in the flow field and the continual creation and annihilation of pairs of topological defects. Lecture 4 compares simulations of active turbulence to experiments on suspensions of microtubules and molecular motors. I introduce lyotropic active nematics and discuss active anchoring at interfaces.

Valley-Selective Landau-Zener Oscillations in Semi-Dirac p-n Junctions

(2016)

Authors:

K Saha, R Nandkishore, SA Parameswaran

Transport in out-of-equilibrium XXZ chains: Exact profiles of charges and currents

Physical Review Letters American Physical Society 117:20 (2016) 207201

Authors:

B Bertini, Mario Collura, J De Nardis, M Fagotti

Abstract:

We consider the nonequilibrium time evolution of piecewise homogeneous states in the XXZ spin-1/2 chain, a paradigmatic example of an interacting integrable model. The initial state can be thought of as the result of joining chains with different global properties. Through dephasing, at late times, the state becomes locally equivalent to a stationary state which explicitly depends on position and time. We propose a kinetic theory of elementary excitations and derive a continuity equation which fully characterizes the thermodynamics of the model. We restrict ourselves to the gapless phase and consider cases where the chains are prepared: (1) at different temperatures, (2) in the ground state of two different models, and (3) in the "domain wall" state. We find excellent agreement (any discrepancy is within the numerical error) between theoretical predictions and numerical simulations of time evolution based on time-evolving block decimation algorithms. As a corollary, we unveil an exact expression for the expectation values of the charge currents in a generic stationary state.

Quantum-disentangled liquid in the half-filled Hubbard model

(2016)

Authors:

Thomas Veness, Fabian HL Essler, Matthew PA Fisher

Multicellular self-organization of P. aeruginosa due to interactions with secreted trails

Physical Review Letters American Physical Society (2016)

Authors:

Anatolij Gelimson, Kun Zhao, Calvin K Lee, W Till Kranz, Gerard CL Wong, Ramin Golestanian

Abstract:

Guided movement in response to slowly diffusing polymeric trails provides a unique mechanism for self-organization of some microorganisms. To elucidate how this signaling route leads to microcolony formation, we experimentally probe the trajectory and orientation of Pseudomonas aeruginosa that propel themselves on a surface using type IV pili motility appendages, which preferentially attach to deposited exopolysaccharides. We construct a stochastic model by analyzing single-bacterium trajectories, and show that the resulting theoretical prediction for the many-body behavior of the bacteria is in quantitative agreement with our experimental characterization of how cells explore the surface via a power law strategy.