Condensation-Driven Phase Transitions in Perturbed String Nets

(2016)

Authors:

Michaël Mariën, Jutho Haegeman, Paul Fendley, Frank Verstraete

Effective dynamics of microorganisms that interact with their own trail

Physical Review Letters American Physical Society (2016)

Authors:

Ramin Golestanian, Anatolij Gelimson, W Till Kranz, Kun Zhao, Gerard CL Wong

Abstract:

Like ants, some microorganisms are known to leave trails on surfaces to communicate. We explore how trail-mediated self-interaction could affect the behavior of individual microorganisms when diffusive spreading of the trail is negligible on the timescale of the microorganism using a simple phenomenological model for an actively moving particle and a finite-width trail. The effective dynamics of each microorganism takes on the form of a stochastic integral equation with the trail interaction appearing in the form of short-term memory. For moderate coupling strength below an emergent critical value, the dynamics exhibits effective diffusion in both orientation and position after a phase of superdiffusive reorientation. We report experimental verification of a seemingly counterintuitive perpendicular alignment mechanism that emerges from the model.

Active micromachines: Microfluidics powered by mesoscale turbulence

Science Advances American Association for the Advancement of Science (2016)

Authors:

Julia Yeomans, Amin Doostmohammadi, Tyler N Shendruk, Sumesh P Thampi, Ramin Golestanian

Abstract:

Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterised by mesoscale turbulence, the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organises into a spin-state where neighbouring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence.

Domain-wall theory and nonstationarity in driven flow with exclusion

Physical Review E American Physical Society 94:1 (2016) 012105

Authors:

Robin B Stinchcombe, Sergio LA de Queiroz

Abstract:

We study the dynamical evolution toward steady state of the stochastic nonequilibrium model known as the totally asymmetric simple exclusion process, in both uniform and nonuniform (staggered) one-dimensional systems with open boundaries. Domain-wall theory and numerical simulations are used and, where pertinent, their results are compared to existing mean-field predictions and exact solutions where available. For uniform chains we find that the inclusion of fluctuations inherent to the domain-wall formulation plays a crucial role in providing good agreement with simulations, which is severely lacking in the corresponding mean-field predictions. For alternating-bond chains the domain-wall predictions for the features of the phase diagram in the parameter space of injection and ejection rates turn out to be realized only in an incipient and quantitatively approximate way. Nevertheless, significant quantitative agreement can be found between several additional domain-wall theory predictions and numerics.

Onset of meso-scale turbulence in living fluids

(2016)

Authors:

Amin Doostmohammadi, Tyler N Shendruk, Kristian Thijssen, Julia M Yeomans