Skyrmions in twisted bilayer graphene: stability, pairing, and crystallization

Physical Review X American Physical Society 12:3 (2022) 031020

Authors:

Yves H Kwan, Glenn Wagner, Nick Bultinick, Steven Simon, SA Parameswaran

Abstract:

We study the excitations that emerge upon doping the translationally invariant correlated insulating states in magic-angle twisted bilayer graphene at various integer filling factors ν. We identify parameter regimes where these are excitations associated with skyrmion textures in the spin or pseudospin degrees of freedom, and explore both short-distance pairing effects and the formation of long-range ordered skyrmion crystals. We perform a comprehensive analysis of the pseudospin skyrmions that emerge upon doping insulators at even ν, delineating the regime in parameter space where these are the lowest-energy charged excitations by means of self-consistent Hartree-Fock calculations on the interacting Bistritzer-MacDonald model. We explicitly demonstrate the purely electron-mediated pairing of skyrmions, a key ingredient behind a recent proposal of skyrmion superconductivity. Building upon this, we construct hopping models to extract the effective masses of paired skyrmions, and discuss our findings and their implications for skyrmion superconductivity in relation to experiments, focusing on the dome-shaped dependence of the transition temperature on the twist angle. We also investigate the properties of spin skyrmions about the quantized anomalous Hall insulator at ν=+3. In both cases, we demonstrate the formation of robust spin or pseudospin skyrmion crystals upon doping to a finite density away from integer filling.

Quantifying information scrambling via classical shadow tomography on programmable quantum simulators

Physical Review A: Atomic, Molecular and Optical Physics American Physical Society 106 (2022) 012441

Authors:

Max McGinely, Jovan Jovanovic, Samuel Garrett, Sebastian Leontica, Steven Simon

Abstract:

We develop techniques to probe the dynamics of quantum information, and implement them experimentally on an IBM superconducting quantum processor. Our protocols adapt shadow tomography for the study of time evolution channels rather than of quantum states, and rely only on single-qubit operations and measurements. We identify two unambiguous signatures of quantum information scrambling, neither of which can be mimicked by dissipative processes, and relate these to many-body teleportation. By realizing quantum chaotic dynamics in experiment, we measure both signatures, and support our results with numerical simulations of the quantum system. We additionally investigate operator growth under this dynamics, and observe behaviour characteristic of quantum chaos. As our methods require only a single quantum state at a time, they can be readily applied on a wide variety of quantum simulators.

Growth of Rényi entropies in interacting integrable models and the breakdown of the quasiparticle picture

Physical Review X American Physical Society 12:3 (2022) 031016

Authors:

Bruno Bertini, Katja Klobas, Vincenzo Alba, Gianluca Lagnese, Pasquale Calabrese

Abstract:

Rényi entropies are conceptually valuable and experimentally relevant generalizations of the celebrated von Neumann entanglement entropy. After a quantum quench in a clean quantum many-body system they generically display a universal linear growth in time followed by saturation. While a finite subsystem is essentially at local equilibrium when the entanglement saturates, it is genuinely out of equilibrium in the growth phase. In particular, the slope of the growth carries vital information on the nature of the system’s dynamics, and its characterization is a key objective of current research. Here we show that the slope of Rényi entropies can be determined by means of a spacetime duality transformation. In essence, we argue that the slope coincides with the stationary density of entropy of the model obtained by exchanging the roles of space and time. Therefore, very surprisingly, the slope of the entanglement is expressed as an equilibrium quantity. We use this observation to find an explicit exact formula for the slope of Rényi entropies in all integrable models treatable by thermodynamic Bethe ansatz and evolving from integrable initial states. Interestingly, this formula can be understood in terms of a quasiparticle picture only in the von Neumann limit.

A DNA origami rotary ratchet motor

Nature Springer Nature 607:7919 (2022) 492-498

Authors:

Anna-Katharina Pumm, Wouter Engelen, Enzo Kopperger, Jonas Isensee, Matthias Vogt, Viktorija Kozina, Massimo Kube, Maximilian N Honemann, Eva Bertosin, Martin Langecker, Ramin Golestanian, Friedrich C Simmel, Hendrik Dietz

Elastically-mediated collective organisation of magnetic microparticles

Soft Matter Royal Society of Chemistry (RSC) 18:28 (2022) 5171-5176

Authors:

Gaspard Junot, Xuefeng Wei, Jordi Ortín, Ramin Golestanian, Yanting Wang, Pietro Tierno, Fanlong Meng