Activity gradients in two- and three-dimensional active nematics

Soft Matter Royal Society of Chemistry 18 (2022) 5654-5661

Authors:

Liam J Ruske, Julia M Yeomans

Abstract:

We numerically investigate how spatial variations of extensile or contractile active stress affect bulk active nematic systems in two and three dimensions. In the absence of defects, activity gradients drive flows which re-orient the nematic director field and thus act as an effective anchoring force. At high activity, defects are created and the system transitions into active turbulence, a chaotic flow state characterized by strong vorticity. We find that in two-dimensional (2D) systems active torques robustly align +1/2 defects parallel to activity gradients, with defect heads pointing towards contractile regions. In three-dimensional (3D) active nematics disclination lines preferentially lie in the plane perpendicular to activity gradients due to active torques acting on line segments. The average orientation of the defect structures in the plane perpendicular to the line tangent depends on the defect type, where wedge-like +1/2 defects align parallel to activity gradients, while twist defects are aligned anti-parallel. Understanding the response of active nematic fluids to activity gradients is an important step towards applying physical theories to biology, where spatial variations of active stress impact morphogenetic processes in developing embryos and affect flows and deformations in growing cell aggregates, such as tumours.

Reply to Ocklenburg and Mundorf: the interplay of developmental bias and natural selection

Proceedings of the National Academy of Sciences National Academy of Sciences 119:28 (2022) e2205299119

Authors:

Iain G Johnston, Kamaludin Dingle, Sam F Greenbury, Chico Q Camargo, Jonathan Doye, Sebastian E Ahnert, Adriaan Louis

Fifty years of ‘More is different’

Nature Reviews Physics Springer Nature 4:8 (2022) 508-510

Authors:

Steven Strogatz, Sara Walker, Julia M Yeomans, Corina Tarnita, Elsa Arcaute, Manlio De Domenico, Oriol Artime, Kwang-Il Goh

Abstract:

August 1972 saw the publication of Philip Anderson’s essay ‘More is different’. In it, he crystallized the idea of emergence, arguing that “at each level of complexity entirely new properties appear” — that is, although, for example, chemistry is subject to the laws of physics, we cannot infer the field of chemistry from our knowledge of physics. Fifty years on from this landmark publication, eight scientists describe the most interesting phenomena that emerge in their fields.

A competitive advantage through fast dead matter elimination in confined cellular aggregates

New Journal of Physics IOP Publishing 24:7 (2022) 073003

Authors:

Yoav G Pollack, Philip Bittihn, Ramin Golestanian

Multiversality and unnecessary criticallity in one dimension

Physical Review Letters American Physical Society 130:25 (2022) 256401

Authors:

Abhishodh Prakash, Michele Fava, Sa Parameswaran

Abstract:

We present microscopic models of spin ladders which exhibit continuous critical surfaces whose properties and existence, unusually, cannot be inferred from those of the flanking phases. These models exhibit either “multiversality”—the presence of different universality classes over finite regions of a critical surface separating two distinct phases—or its close cousin, “unnecessary criticality”—the presence of a stable critical surface within a single, possibly trivial, phase. We elucidate these properties using Abelian bosonization and density-matrix renormalization-group simulations, and attempt to distill the key ingredients required to generalize these considerations.