Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules
J. Am. Chem. Soc. 2023, 145, 39, 21330–21343
Abstract:
The family of hybrid organic–inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-Ci molecules, where Ci indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-Ci)2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic–inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-Ci molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10–100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic–organic electronic properties through the wide range of functionalities available in the world of organics.
Hydrogen bond-assisted dual passivation for blue perovskite light-emitting diodes
ACS Energy Letters American Chemical Society 8:10 (2023) 4296-4303
Abstract:
Although significant progress has been made in the development of green, red, and near-infrared perovskite light-emitting diodes (PeLEDs), blue PeLEDs exhibit inferior performance, owing to various defects and poor carrier injection in solution-processed perovskite films. Thus, this study incorporates dual-passivation additive diphenylphosphinamide (DPPA) into perovskite films, and through density functional theory calculations and experimental characterizations, DPPA has been proven to be an effective passivator. Its phosphine oxide group coordinates with unsaturated lead ions, passivating perovskite defects, while the amino group forms hydrogen bonds with adjacent halide ions, suppressing their migration and further strengthening the passivation effect. Blue quasi-two-dimensional PeLEDs based on DPPA-modified perovskite films achieved an external quantum efficiency of 12.31% with an emission peak at 486 nm. Moreover, the device operational lifetime was extended by 32% with more stable spectra owing to the decreased defect density and suppressed ion migration in the perovskite film.Phosphine oxide modulator-ameliorated hole injection for blue perovskite light-emitting diodes
Journal of Materials Chemistry A Royal Society of Chemistry 11:38 (2023) 20808-20815
Abstract:
Despite the enormous developments in perovskite light-emitting diodes (PeLEDs) recently, obtaining efficient blue PeLEDs is still considered a critical challenge due to the non-radiative recombination and unbalanced charge injection caused by the unmatched carrier mobility and the deep hole-injection barrier between the hole-transport layer (HTL) and the emissive layer (EML). Herein, we incorporate tris(4-trifluoromethylphenyl)phosphine oxide (TMFPPO), obtained through a facile oxidation synthesis process, into poly(9-vinylcarbazole) (PVK). TMFPPO incorporation modulated the energy level and hole mobility of the binary-blend HTLs to eliminate the hole-injection barrier and balance the charge injection within the EML. Consequently, the blue PeLEDs with blended HTL presented an external quantum efficiency (EQE) of 7.23% centred at 477 nm, which was much higher than the EQE of a PVK device (4.95%). Our results demonstrate that modulating the energy level and charge injection of the HTL in the device is a promising method for obtaining efficient blue PeLEDs.Small molecule dopant-free dual hole transporting material for conventional and inverted perovskite solar cells
Materials Chemistry Frontiers Royal Society of Chemistry (RSC) 7:18 (2023) 4019-4028
Long-term operating stability in perovskite photovoltaics
Nature Reviews Materials Springer Nature 8:9 (2023) 569-586