Correction to "A Templating Approach to Controlling the Growth of Coevaporated Halide Perovskites".

ACS energy letters 8:11 (2023) 4714-4715

Authors:

Siyu Yan, Jay B Patel, Jae Eun Lee, Karim A Elmestekawy, Sinclair R Ratnasingham, Qimu Yuan, Laura M Herz, Nakita K Noel, Michael B Johnston

Abstract:

[This corrects the article DOI: 10.1021/acsenergylett.3c01368.].

Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion

(2023)

Authors:

James C Blakesley, Ruy S Bonilla, Marina Freitag, Alex M Ganose, Nicola Gasparini, Pascal Kaienburg, George Koutsourakis, Jonathan D Major, Jenny Nelson, Nakita K Noel, Bart Roose, Jae Sung Yun, Simon Aliwell, Pietro P Altermatt, Tayebeh Ameri, Virgil Andrei, Ardalan Armin, Diego Bagnis, Jenny Baker, Hamish Beath, Mathieu Bellanger, Philippe Berrouard, Jochen Blumberger, Stuart A Boden, Hugo Bronstein, Matthew J Carnie, Chris Case, Fernando A Castro, Yi-Ming Chang, Elmer Chao, Tracey M Clarke, Graeme Cooke, Pablo Docampo, Ken Durose, James R Durrant, Marina R Filip, Richard H Friend, Jarvist M Frost, Elizabeth A Gibson, Alexander J Gillett, Pooja Goddard, Severin N Habisreutinger, Martin Heeney, Arthur D Hendsbee, Louise C Hirst, M Saiful Islam, KDG Imalka Jayawardena, Michael B Johnston, Matthias Kauer, Jeff Kettle, Ji-Seon Kim, Dan Lamb, David Lidzey, Jihoo Lim, Roderick MacKenzie, Nigel Mason, Iain McCulloch, Keith P McKenna, Sebastian B Meier, Paul Meredith, Graham Morse, John D Murphy, Chris Nicklin, Paloma Ortega-Arriaga, Thomas Osterberg, Jay B Patel, Anthony Peaker, Moritz Riede, Martyn Rush, James W Ryan, David O Scanlon, Peter J Skabara, Franky So, Henry J Snaith, Ludmilla Steier, Jarla Thiesbrummel, Alessandro Troisi, Craig Underwood, Karsten Walzer, Trystan Watson, J Michael Walls, Aron Walsh, Lucy D Whalley, Benedict Winchester, Samuel D Stranks, Robert LZ Hoye

Combined Stress Testing of Perovskite Solar Cells for Stable Operation in Space

ACS Applied Energy Materials American Chemical Society (ACS) 6:20 (2023) 10319-10326

Authors:

Kaitlyn T VanSant, Ahmad R Kirmani, Jay B Patel, Laura E Crowe, David P Ostrowski, Brian M Wieliczka, Michael D McGehee, Laura T Schelhas, Joseph M Luther, Timothy J Peshek, Lyndsey McMillon-Brown

A templating approach to controlling the growth of coevaporated halide perovskites

ACS Energy Letters American Chemical Society 8:10 (2023) 4008-4015

Authors:

Siyu Yan, Jay B Patel, Jae Eun Lee, Karim A Elmestekawy, Sinclair R Ratnasingham, Qimu Yuan, Laura M Herz, Nakita K Noel, Michael Johnston

Abstract:

Metal halide perovskite semiconductors have shown significant potential for use in photovoltaic (PV) devices. While fabrication of perovskite thin films can be achieved through a variety of techniques, thermal vapor deposition is particularly promising, allowing for high-throughput fabrication. However, the ability to control the nucleation and growth of these materials, particularly at the charge-transport layer/perovskite interface, is critical to unlocking the full potential of vapor-deposited perovskite PV. In this study, we explore the use of a templating layer to control the growth of coevaporated perovskite films and find that such templating leads to highly oriented films with identical morphology, crystal structure, and optoelectronic properties independent of the underlying layers. Solar cells incorporating templated FA0.9Cs0.1PbI3–xClx show marked improvements with steady-state power conversion efficiency over 19.8%. Our findings provide a straightforward and reproducible method of controlling the charge-transport layer/coevaporated perovskite interface, further clearing the path toward large-scale fabrication of efficient PV devices.

Contrasting charge-carrier dynamics across key metal-halide perovskite compositions through in situ simultaneous probes

Advanced Functional Materials Wiley 33:51 (2023) 2305283

Authors:

Am Ulatowski, Ka Elmestekawy, Jb Patel, Nk Noel, S Yan, H Kraus, Pg Huggard, Mb Johnston, Laura Herz

Abstract:

Metal-halide perovskites have proven to be a versatile group of semiconductors for optoelectronic applications, with ease of bandgap tuning and stability improvements enabled by halide and cation mixing. However, such compositional variations can be accompanied by significant changes in their charge-carrier transport and recombination regimes that are still not fully understood. Here, a novel combinatorial technique is presented to disentangle such dynamic processes over a wide range of temperatures, based on transient free-space, high-frequency microwave conductivity and photoluminescence measurements conducted simultaneously in situ. Such measurements are used to reveal and contrast the dominant charge-carrier recombination pathways for a range of key compositions: prototypical methylammonium lead iodide perovskite (MAPbI3), the stable mixed formamidinium-caesium lead-halide perovskite FA0.83Cs0.17PbBr0.6I2.4 targeted for photovoltaic tandems with silicon, and fully inorganic wide-bandgap CsPbBr3 aimed toward light sources and X-ray detector applications. The changes in charge-carrier dynamics in FA0.83Cs0.17PbBr0.6I2.4 across temperatures are shown to be dominated by radiative processes, while those in MAPbI3 are governed by energetic disorder at low temperatures, low-bandgap minority-phase inclusions around the phase transition, and non-radiative processes at room temperature. In contrast, CsPbBr3 exhibits significant charge-carrier trapping at low and high temperatures, highlighting the need for improvement of material processing techniques for wide-bandgap perovskites.